K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

8/ Giả sử N(xN;yN)

Cách 1:\(\overrightarrow{BA}=\left(-2;6\right);\overrightarrow{CN}=\left(x_N-3;y_n-4\right)\)

vì tứ giác ABCN là hbh

=> \(\overrightarrow{BA}=\overrightarrow{CN}\Rightarrow\left\{{}\begin{matrix}x_N-3=-2\\y_N-4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_N=1\\y_N=10\end{matrix}\right.\)

=> N(1;10)

Cách 2:

\(\overrightarrow{AN}=\left(x_N+1;y_N-4\right);\overrightarrow{BC}=\left(2;6\right)\)

ABCN là hbh => \(\overrightarrow{AN}=\overrightarrow{BC}\)

\(\Rightarrow\left\{{}\begin{matrix}x_N+1=2\\y_N-4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_N=1\\y_N=10\end{matrix}\right.\)

vậy....

9/ giả sử I(xI;yI)

\(\overrightarrow{IA}=\left(-1-x_I;4-y_I\right)\)

\(\overrightarrow{IB}=\left(1-x_I;-2-y_I\right)\Rightarrow2\overrightarrow{IB}=\left(2-2x_I;-4-2y_I\right)\)

\(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\)

=> \(\left\{{}\begin{matrix}-1-x_I+2-2x_I=0\\4-y_I-4-2y_I=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_I=\frac{1}{3}\\y_I=0\end{matrix}\right.\)

vậy.......

10/ xác đinh vt JA;vt 2JB; vt -4JC rồi thay vào

17 tháng 10 2019

6/

Giả sử: E(xE;0) (E thuộc Ox)

A,B,E thẳng hàng => tồn tại số thực k(k khác 0) để \(\overrightarrow{AE}=k\cdot\overrightarrow{AB}\)

Ta có: \(\overrightarrow{AE}=\left(x_E+1;-4\right)\)

\(\overrightarrow{AB}=\left(2;-6\right)\Rightarrow k\cdot\overrightarrow{AB}=\left(2k;-6k\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_E+1=2k\\-4=-6k\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\k=\frac{2}{3}\end{matrix}\right.\)

Vậy E(\(\frac{1}{3};0\)) thoả mãn \(\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AB}\) để 3 điểm A,B,E thẳng hàng

7/ F thuộc Oy, giải sử F(0;yF)

làm tương tự (6)

NV
19 tháng 10 2019

Gọi \(M\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-1-x;4\right)\\\overrightarrow{MB}=\left(1-x;-2\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+2\overrightarrow{MB}=\left(1-3x;0\right)\)

\(\Rightarrow\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=\sqrt{\left(1-3x\right)^2}\ge0\)

Dấu "=" xảy ra khi \(x=\frac{1}{3}\Rightarrow M\left(\frac{1}{3};0\right)\)

Gọi \(P\left(0;y\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{PA}=\left(-1;4-y\right)\\\overrightarrow{PB}=\left(1;-2-y\right)\\\overrightarrow{PC}=\left(3;4-y\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{PA}+2\overrightarrow{PB}-4\overrightarrow{PC}=\left(-11;5y-16\right)\)

\(\Rightarrow\left|\overrightarrow{PA}+\overrightarrow{PB}-4\overrightarrow{PC}\right|=\sqrt{11^2+\left(5y-16\right)^2}\ge11\)

Dấu "=" xảy ra khi \(5y-16=0\Rightarrow y=\frac{16}{5}\Rightarrow P\left(0;\frac{16}{5}\right)\)

9 tháng 10 2019

a) Ta có:

\(3\overrightarrow{IA}+2\overrightarrow{IC}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IC}\)

\(\Leftrightarrow3\overrightarrow{IA}=-2\left(\overrightarrow{IA}-\overrightarrow{CA}\right)\)

\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IA}+2\overrightarrow{CA}\)

\(\Leftrightarrow3\overrightarrow{IA}+2\overrightarrow{IA}=2\overrightarrow{CA}\)

\(\Leftrightarrow5\overrightarrow{IA}=2\overrightarrow{CA}\)

\(\Leftrightarrow\overrightarrow{IA}=\frac{2}{5}\overrightarrow{CA}\)