Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét với mọi n > 2 , ta có \(\frac{n}{n+2}< \frac{n-1}{n}\) (vì \(n^2< n^2+n-2\))
Áp dụng : \(A=\frac{1}{3}.\frac{4}{6}.\frac{7}{9}.\frac{10}{12}...\frac{208}{210}< \frac{1}{3}.\frac{3}{4}.\frac{6}{7}.\frac{9}{10}...\frac{207}{208}\)
Suy ra : \(A^2< \frac{1.4.7.10...208}{3.6.9.12...210}.\frac{1.3.6.9...207}{3.4.7.10...208}=\frac{1}{210}.\frac{1}{3}=\frac{1}{630}< \frac{1}{625}=\left(\frac{1}{25}\right)^2\)
Do đó \(A< \frac{1}{25}\)
\(B=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\)
\(B=\frac{1}{3}-\frac{1}{10}\)
\(B=\frac{7}{30}\)
\(\frac{1}{9.10}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)+\frac{1}{9.10}\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)+\frac{1}{90}\)
\(=-\left(1-\frac{1}{10}\right)+\frac{1}{90}\)
\(=-\frac{9}{10}+\frac{1}{90}\)
= ...
bn tự tính nha!
7/3.4 - 9/4.5 + 11/5.6 - 13/6.7 + 15/7.8 - 17/8.9 + 19/9.10
= 3+4/3.4 - 4+5/4.5 + 5+6/5.6 - 6+7/6.7 + 7+8/7.8 - 8+9/8.9 + 9+10/9.10
=1/3 + 1/4 - 1/4 - 1/5 + 1/5 + 1/6 -1/6 - 1/7 +1/7 +1/8 - 1/8 - 1/9 + 1/9 + 1/10
=1/3 + 1/10=13/30
\(=\frac{6+1}{12}-\frac{10-1}{20}+\frac{10+1}{30}-\frac{14-1}{42}+\frac{14+1}{56}-\frac{18-1}{72}+\frac{18+1}{90}\)
=\(\frac{6}{12}+\frac{1}{12}-\frac{10}{20}+\frac{1}{20}+\frac{10}{30}+\frac{1}{30}-\frac{14}{42}+\frac{1}{42}+\frac{14}{56}+\frac{1}{56}-\frac{18}{72}+\frac{1}{72}+\frac{18}{90}+\frac{1}{90}\)
=\(\frac{1}{2}+\frac{1}{12}-\frac{1}{2}+\frac{1}{20}+\frac{1}{3}+\frac{1}{30}-\frac{1}{3}+\frac{1}{42}+\frac{1}{4}+\frac{1}{56}-\frac{1}{4}+\frac{1}{72}+\frac{1}{5}+\frac{1}{90}\)
\(=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{5}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{6}\)
\(=\frac{1}{3}-\frac{1}{10}+\frac{1}{5}\)
\(=\frac{10}{30}-\frac{3}{30}+\frac{6}{30}=\frac{13}{30}\)
Ta có \(A=\frac{1}{3}.\frac{4}{6}.\frac{7}{9}.....\frac{208}{210}=\frac{1.4.7.....208}{3.6.9.....210}\)
Mà \(1< 3,4< 6,7< 9,...,208< 210\)
\(\Rightarrow1.4.7.....208< 3.6.9.....210\)
\(\Rightarrow\frac{1.4.7.....208}{3.6.9.....210}< 1\)\(\Leftrightarrow A< 1\)
Lại có \(1< 25\)\(\Rightarrow A< 25\)