K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2020

Ta có: 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

                                                                       \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

                                                                       \(=\frac{1}{1}-\frac{1}{100}\)

                                                                        \(=\frac{99}{100}\)

Mà \(\frac{99}{100}< 1\)                                                                        

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

Vậy \(A< 1\)

                     

24 tháng 6 2020

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{100^2}=\frac{1}{100\cdot100}< \frac{1}{99\cdot100}\)

=> \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

=> \(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

=> \(A< \frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Lại có : \(\frac{99}{100}< 1\)

=> \(A< \frac{99}{100}< 1\)=> \(A< 1\)( đpcm )

NM
22 tháng 11 2021

ta có 

\(4A=4+4^2+4^3+..+4^{99}+4^{100}=\left(1+4+4^2+..+4^{99}\right)+4^{100}-1\)

hay 

\(4A=A+4^{100}-1\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}=\frac{B}{3}\)

vậy ta có điều phải chứng minh

7 tháng 5 2019

A=\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+\(\frac{1}{5^2}\)+...+\(\frac{1}{98^2}\)

A=\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+\(\frac{1}{5.5}\)+...+\(\frac{1}{98.98}\)

A<\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+...+\(\frac{1}{97.98}\)=\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+...+\(\frac{1}{97}\)-\(\frac{1}{98}\)=\(\frac{1}{2}\)-\(\frac{1}{98}\)=\(\frac{24}{49}\)<1.

Vậy A<1

26 tháng 7 2019

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)\(\frac{1}{4^2}< \frac{1}{3\cdot4}\); ....; \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)

\(\Rightarrow S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)

\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(\Rightarrow S< 1-\frac{1}{9}\)

\(\Rightarrow S< \frac{8}{9}\)    (1)

\(\frac{1}{2^2}>\frac{1}{2\cdot3};\frac{1}{3^2}>\frac{1}{3\cdot4};\frac{1}{4^2}>\frac{1}{4\cdot5};...;\frac{1}{9^2}>\frac{1}{9\cdot10}\)

\(\Rightarrow S>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}\)

\(\Rightarrow S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow S>\frac{1}{2}-\frac{1}{10}\)

\(\Rightarrow S>\frac{2}{5}\)   (2)

(1)(2) => 2/5 < S < 8/9

26 tháng 7 2019

\(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}< \frac{1}{a^2}\)

\(\frac{1}{a}-1-\frac{1}{a}=-1< \frac{1}{a^2}\) Vì \(\frac{1}{a^2}>0;-1< 0\)

Khi đó thì ĐỀ SAI

16 tháng 4 2017

tk ủng hộ mk nha

16 tháng 4 2017

Ta có 1/22+1/3^2+...+1/50^2

<1/1.2+1/2.3+...+1/49.50

=1/1-1/2+1/2-1/3+...+1/49-1/50

=1-1/50<1

Vậy A<1

Nhớ k mik nha