A. <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

A nguyen suy ra 2n+3 chia het cho n-2 

suy ra 2n-4+7 chia het cho n-2 suy ra 2[n-2] +7 chia het cho n-2 suy ra 7 chia het cho n-2

n thuoc tap hop [3 ,1 ,9,-5]

hoc tot

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)

a)      n phải khác 2

b)     để A nguyên thì 

1 chia hết cho 2-n

=> 2-n thuộc  tập ước của 1 

=> hoặc 2-n=1 =>n=1

hoặc 2-n=-1 =>n=3

hk tốt

1 tháng 5 2019

a) Để A là phân số thì \(2-n\ne0\)

\(\Leftrightarrow n\ne2\)

b) Để A nguyên thì \(1⋮\left(2-n\right)\)

\(\Leftrightarrow2-n\inƯ\left(1\right)=\left\{\pm1\right\}\)

Lập bảng:

\(2-n\)\(1\)\(-1\)
\(n\)\(1\)\(3\)

Vậy n = 1 hoặc n = 3 thì A nguyên

4 tháng 5 2019

Ta có A=\(\frac{3x\left(2n+5\right)}{2x\left(3n+1\right)}\)

A=\(\frac{6n+15}{6n+2}\)=\(\frac{\left(6n+2\right)+13}{6n+2}\)=\(\frac{6n+2}{6n+2}\)+\(\frac{13}{6n+2}\)=1+\(\frac{13}{6n+2}\)

Để A là số tự nhiên =>6n+2 chia hết cho 13

=>6n+2 thuộc Ư (13)=(1;13)

6n+2=1=>n thuộc Z (loại)

6n+2=13=> ko tìm đc n

4 tháng 5 2019

Để A có giá trị là SNT \(\Leftrightarrow2n+5⋮3n+1\)

                                    \(\Leftrightarrow6n+15⋮3n+1\)

                                   \(\Leftrightarrow2.\left(3n+1\right)+13⋮3n+1\)

         mà \(\Leftrightarrow2.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{1;13\right\}\)( ước phải là SNT )

\(\Rightarrow n\in\left\{0;4\right\}\)

5 tháng 4 2019

\(A=\frac{2n+3}{n-2}=\frac{2n-4+7}{n-2}=\frac{2.\left(n-2\right)}{n-2}+\frac{7}{n-2}=2+\frac{7}{n-2}\)

Ta có A lớn nhất \(\Leftrightarrow\frac{7}{n-2}\)lớn nhất

\(\Leftrightarrow\hept{\begin{cases}n-2coGTNN\\n-2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n>2;n\in Z\\n-2coGTNN\end{cases}}\)

\(\Leftrightarrow n=3\)

Khi đó A có GTLN là \(\frac{2.3+3}{3-2}=9\)

Vậy MAX A =9 \(\Leftrightarrow x=3\)

(P/S: có vài chỗ anh viết ko ra tiếng việt nhé )

11 tháng 2 2020

a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên

\(\Rightarrow\)12\(⋮\)3n-1

\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)

Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!

b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên 

\(\Rightarrow\)2n+3\(⋮\)7

\(\Rightarrow\)2n+3=7k  

\(\Rightarrow n=\frac{7k-3}{2}\)

21 tháng 8 2017

b) (7x -11)^3 = 26.2^2 + 2.3^0 
(7x -11)^3 = (26).(4) + (2).(1) = 106 
(7x -11) = ³√106 
7x = 11 + (³√106) 
x = (1/7)(11 + ³√106) 
x ≈ 2,25 
x không thuộc N 

3 tháng 7 2018

a. Ta có:

\(\frac{8n+193}{4n+3}=\frac{2.4n+2.3+187}{4n+3}\)

                   \(=\frac{2.\left(4n+3\right)+187}{4n+3}\)

                   \(=2+\frac{187}{4n+3}\)

Để M có giá trị là số tự nhiên thì \(4n+3\)phải là ước tự nhiên của \(187=\left\{1;11;17;187\right\}\)

\(\left(+\right)4n+3=1\Rightarrow4n=1-3=-2\Leftrightarrow n=-\frac{1}{2}\)( không thỏa mãn n là số tự nhiên )

\(\left(+\right)4n+3=11\Rightarrow4n=11-3=8\Leftrightarrow n=2\)( thỏa mãn )

\(\left(+\right)4n+3=17\Rightarrow4n=14\Leftrightarrow n=\frac{7}{2}\)( không thỏa mãn n là số tự nhiên )

\(\left(+\right)4n+3=187\Rightarrow4n=187-3=184\Leftrightarrow n=46\)( thỏa mãn )

Vậy \(n\in\left\{2;46\right\}.\)

b. Gọi ước chung của 8n + 193 và 4n + 3 là d

Ta có:

\(\hept{\begin{cases}8n+193⋮d\\4n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}8n+193⋮d\\2\left(4n+3\right)⋮d\end{cases}}\)

\(\Rightarrow8n+193-2\left(4n+3\right)⋮d\)

\(\Leftrightarrow187⋮d\)

\(\Rightarrow d\inƯ\left(187\right)=\left\{1;11;17;187\right\}\)

Thử:

\(n=156\Rightarrow M=\frac{77}{19}\)

\(n=165\Rightarrow M=\frac{89}{39}\)

\(n=167\Rightarrow M=\frac{139}{61}.\)

                             

3 tháng 7 2018

\(M=\frac{8n+193}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\inℕ^∗\Rightarrow\frac{187}{4n+3}\inℕ^∗\)

Vì \(n\inℕ^∗\Rightarrow4n+3\inℕ^∗\Rightarrow4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{\pm1;\pm11;\pm17;\pm187\right\}\)

\(\Rightarrow n\in\left\{-1;2;-5;46\right\}\)

b. M rút gọn được <=> \(\frac{187}{4n+3}\)rút gọn được => 4n+3 chia hết cho 11, 17 hoặc 187

Mà \(150\le n\le170\Rightarrow603\le4n+3\le683\)

Ta có: trong khoảng từ 603 -> 683 chỉ có:

 + 605, 616, ..., 682 chia hết cho 11 => 4n+3 \(\in\){605, 616, ..., 682} => Tìm n

 + 612, 629, ..., 680 chia hết cho 17 => \(4n+3\in\left\{612,629,...,680\right\}\)=> tìm n

 + không có số nào chia hết cho 187

4 tháng 7 2021

a) Ta có:

\(\frac{9}{x}=\frac{y}{5}\Rightarrow xy=45\)

Mà \(45=5.9=9.5=\left(-5\right)\left(-9\right)=\left(-9\right)\left(-5\right)\)

Vậy x=1;y=2 hoặc x=2;y=1 hoặc x=-1;y=-2 hoặc x=-2;y=-1

b)  Ta có: \(\frac{n+1}{n-1}=\frac{\left(n-1\right)+2}{n-1}=1+\frac{2}{n-1}\left(n\ne1\right)\)

Để A nguyên \(\Leftrightarrow\frac{2}{n-1}\) nguyên

\(\Leftrightarrow n-1\inƯ\left(2\right)=\left\{-1;-2;0;1;2\right\}\)

\(\Rightarrow n\in\left\{-1;0;2;3\right\}\)

c) Gọi abcd là số cần tìm

Ta có: a: 6 cách

b: 5 cách

c: 4 cách

d: 3 cách

==> có> 6.5.4.3=360 số có 4 chữ số khác nhau được lập nên từ các chữ số đã cho

4 tháng 7 2021

Ai giúp tui ik đang cần gấp :<

12 tháng 1 2019

Làm ơn có ai làm giúp mình đi! Một bài thôi cũng được.

10 tháng 4 2019

Này m đk lm đề này ak , t bh mới đk cô cho lm . Mẹ khó vãi , mỗi câu đầu m hỏi t làm đk thôi