Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A = 2 + 22 + 23 + ... + 2201
A = 2A - A = 2 + 22 + 23 + ... + 2201 - ( 1 + 2 + 22 + 23 + ... + 2200 )
= 2 + 22 + 23 + ... + 2201 - 1 - 2 - 22 - 23 - ... - 2200 = 2201 - 1
=> A + 1 = 2201 - 1 + 1 = 2201
Ta có: A=1+2+22+23+24+…+2200
=>2A=2+22+23+24+25+…+2201
=>2A-A=2+22+23+24+25+…+2201-1-2-22-23-24-…-2200
=>A=2201-1
=>A+1=2201
2A = 2 + 2^2+ 2^3+...+2^101
2A-A = 2^101- 1
=> A = 2^101- 1
=> A + 1 = 2^101
2A = 2 + 22 + 23 + ... + 2200 + 2201
2A - A = ( 2 + 22 + 23 +...+ 2200 + 2201 ) - ( 1 + 2 + 22 + 23 +...+ 2200 )
=> A = 2201 - 1
=> A +1= 2201
A = 1 + 2 + 22 + 23 + ... + 2100
2A = 2 + 22 + 23 + 24 + ... + 2101
2A - A = (2 + 22 + 23 + 24 + ... + 2101) - (1 + 2 + 22 + 23 + ... + 2100)
A = 2101 - 1
A + 1 = 2101
Ta có : A=1+2+22+23+...+2200
=>2A=2.(1+2+22+23+...+2200)
2A=2+22+23+24+...+2201
=>2A-A=(2+22+23+24+...+2201)-(1+2+22+23+...+2200)
=>A=2201-1
=>A+1=2201
Mình làm đúng đấy bạn ạ
a) Ta có:
A = 1 + 2 + 22 + 23 + ... + 2200
=> 2A = 2(1 + 2 + 22 + 23 + ... + 2200)
=> 2A = 2 + 22 + 23 + 24 + ... + 2201
=> 2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)
=> A = 2201 - 1
=> A + 1 = 2201 - 1 + 1
=> A + 1 = 2201
Vậy A + 1 = 2201
b) Ta có:
B = 3 + 32 + 33 + ... + 32005
=> 3B = 3(3 + 32 + 33 + ... + 32005)
=> 3B = 32 + 33 + 34 + ... + 32006
=> 3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + .. + 32005)
=> 2B = 32006 - 3
c) Ta có:
C = 4 + 22 + 23 + ... + 22005
Đặt M = 22 + 23 + ... + 22005, ta có:
2M = 2(22 + 23 + ... + 22005)
=> 2M = 23 + 24 + ... + 22006
=> 2M - M = (23 + 24 + ... + 22006) - (22 + 23 + ... + 22005)
=> M = 22006 - 22
=> M = 22006 - 4
Thay M = 22006 - 4 vào C, ta có:
C = 4 + (22006 - 4) = 22006
=> 2C = 2 . 22006 = 22007
Vậy 2C là lũy thừa của 2.
3) 2 + 22= 2 + 2.2 = 2 .( 1+2 ) = 2. 3
các phần còn lại tương tụ nhé !
\(A=2+2^2+2^3+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(\Rightarrow A=2^{101}-2\)
\(\Rightarrow A+2=2^{101}-2+2\)
\(\Rightarrow A+2=2^{101}\)
\(A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2.\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
\(\Rightarrow A+1=2^{101}-2+2\)
\(\Rightarrow A+2=2^{101}\)
Vậy A+2=2101
2A = 2+2^2 + 2^3 + ...+2^200 + 2^201
2A - A =( 2+2^2 + 2^3 + ...+2^200 + 2^201)-(1+2+2^2 + 2^3 + ...+2^200 )
=> A = 2^201 - 1
=> A+1 = 2^201
A = 1+2=22+...+2200
2A=2+22+23+...+2201
2A-A=(2+22+23+...+2201)-(1+2=22+...+2200)
A=2201-1
=>A+1=2201-1+1=2201
Vậy A =2201