K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{98}{2^{98}}+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)

\(2A=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\) (lấy 2A - A = A)

Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)

\(2B=2+1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)

\(B=2B-B=2-\frac{1}{2^{99}}\)

Do đó: \(A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}< 2\)

4 tháng 4 2016

Bạn xem lại đề câu a) cho rõ lại

Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1

                                 = x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1

                                 = x-1 =  2012

27 tháng 3 2017

phải là so sánh A với 2 mới đúng

A=-1++(-1)+..+-(1) có 50 số -1

=>A=-1x50=-50

B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

B=0+0+0+..+0

B=0

C=2^100-(2^99+2^98+...+1)

C=2^100-(2^100-1)

C=1

9 tháng 2 2019

A = (1+3+ 32 + 33) + (34 + 35 + 36 + 37) +  ...+ (396 + 397  + 398 + 399)  (Có 100 số nên có 25 nhóm, mỗi nhóm có 4 số )

A = 40. 1 + 34.(1 + 3 + 32 + 33) +...+ 396.(1 + 3 + 32 + 33) = 40.1 + 40.34 + ...+ 40.396 = 40.( 1+ 34 + ... + 396)

=> A chia hết cho 4 và chia hết cho 40

D = (2 + 22 + 23 + 24 ) + (25 + 26 + 27 + 28) + ...+ (297 + 298 + 299 + 2100

D = 30 .1 + 25.  (2 + 22 + 23 + 24 ) + ... + 297.  (2 + 22 + 23 + 24 ) 

D = 30.1 + 30.25 + ...+ 30.297 = 30. (1 + 25 + ...+ 297)

=> D chia hết cho 30 nên chia hết cho 15 và D có tận cùng là 0

2) 540 = (54)10  = 62510 > 62010  => 540 > 62010

1030 = (103)10 = 100010 < 102410 = (210)10 = 2100 

333444 = (3334)111 = (34.1114)111 = 81111.111444

444333 = (4443)111 = (43.1113)111 = 64111.111333  <  81111.111444

=> 333444 > 444333

13 tháng 8 2018

P/s: làm từng phần một

1.

\(2A=2^2+2^3+...+2^{101}\)

\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

\(A=2^{101}-2\)

13 tháng 8 2018

2.

\(\frac{A}{2}=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{59\cdot61}\)

\(\frac{A}{2}=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)

\(\frac{A}{2}=\frac{1}{5}-\frac{1}{61}\)

\(\frac{A}{2}=\frac{56}{305}\)

\(A=\frac{112}{305}\)

15 tháng 9 2015

b) Đặt \(C=\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{1000}}\)

\(\frac{1}{4}A=\frac{1}{4^2}+\frac{1}{4^3}+.......+\frac{1}{4^{1001}}\)

\(A-\frac{1}{4}A=\left(\frac{1}{4^2}-\frac{1}{4^2}\right)+\left(\frac{1}{4^3}-\frac{1}{4^3}\right)+.....+\frac{1}{4}-\frac{1}{4^{1001}}\)

\(\frac{3}{4}A=\frac{1}{4}-\frac{1}{4^{1001}}\)

Đến đây Đặt \(\frac{3}{4}B=\frac{1}{4}\)

Ta có: \(\frac{3}{4}A<\frac{3}{4}B\) \(\rightarrow A

15 tháng 9 2015

À thì ra bạn học cùng trường với Nguyễn Âu Hồng Sơn