K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

help meeee

 

24 tháng 12 2023

\(A=1+2+2^2+...+2^{2024}\)

\(=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2022}\left(1+2+2^2\right)\)

\(=7\cdot\left(1+2^3+...+2^{2022}\right)⋮7\)

15 tháng 11 2021

1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)

\(=7\left(6^{2020}+6^{2022}\right)⋮7\)

AH
Akai Haruma
Giáo viên
16 tháng 11 2021

Bài 1:

$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$

Ta có đpcm.

15 tháng 11 2021

1)  A=62020+62021+62022+62023

    A= ( 62020+62021) +  ( 62022+62023)

    A= 62020.( 1+6) + 62022.( 1+6)

    A= 62020.7+62022.7

    A= 7.( 62020+62022)

Vì 7 chia hết cho 7 => 7.(62020+62022) chia hết cho 7 hay A chia hết cho 7.

Vậy A chia hết cho 7

    _HT_

15 tháng 11 2021

2)  1+2+3+...+n=1275

Ta thấy dãy số trên là dãy số cách đều nên có khoảng cách là 1 đơn vị 

=> Dãy số trên có n số hạng

Tổng của dãy số trên là :   (n+1).n:2 = 1275

                                          (n+1).n= 1275.2=2550

Mà n và n+1 là 2 số tự nhiên liên tiếp => (n+1).n = 51.50

=> n=50 ( vì n< n+1)

  Vậy n=50

_HT_

10 tháng 11 2023

a) \(A=2+2^2+...+2^{2024}\)

\(2A=2^2+2^3+...+2^{2025}\)

\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)

\(A=2^{2025}-2\) 

b) \(2A+4=2n\)

\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)

\(\Rightarrow2^{2026}-4+4=2n\)

\(\Rightarrow2n=2^{2026}\)

\(\Rightarrow n=2^{2026}:2\)

\(\Rightarrow n=2^{2025}\) 

c) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)

d) \(A=2+2^2+2^3+...+2^{2024}\)

\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)

\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)

\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)

Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7

⇒ A : 7 dư 2 

10 tháng 11 2023

cái câu d nó cứ sao sao ý bn

hiu

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

Lời giải:

$A=9+2.3^2+2.3^3+2.3^4+...+2.3^{2023}$

$A-9=2(3^2+3^3+3^4+...+3^{2023})$

$3(A-9)=2(3^3+3^4+3^5+...+3^{2024})$

$\Rightarrow 3(A-9)-(A-9)=2(3^{2024}-3^2)$

$2(A-9)=2.3^{2024}-18$

$\Rightarrow 2A-18=2.3^{2024}-18$

$\Rightarrow A=3^{2024}\vdots 3^{2023}$ (đpcm)

24 tháng 10 2023

ko bt lm

 

7 tháng 8 2019

Làm mẫu câu b)

b) n là số tự nhiên nên n có 1 trong 2 dạng 2k hoặc 2k + 1

TH1: n = 2k

\(\Rightarrow\) \(\left(2k+5\right)\left(2k+8\right)=2\left(k+4\right)\left(2k+5\right)⋮2\)

TH1: n = 2k +1

\(\Rightarrow\left(2k+1+5\right)\left(2k+1+8\right)=2\left(k+3\right)\left(2k+9\right)⋮2\)

7 tháng 8 2019

a) Do (2n+5) là số lẻ,4n+2023 là số lẻ \(\Rightarrow\)(2n+5).(4n+2023) là số lẻ

\(\Rightarrow\)(2n+5).(4n+2023)  không chia hết cho 2

Vậy .................

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12