K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{2^2}>\dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)

...

\(\dfrac{1}{9^2}>\dfrac{1}{9\cdot10}=\dfrac{1}{9}-\dfrac{1}{10}\)

Do đó: \(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{4}{10}=\dfrac{2}{5}\)

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{9^2}< \dfrac{1}{8\cdot9}=\dfrac{1}{8}-\dfrac{1}{9}\)

Do đó: \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}=\dfrac{8}{9}\)

Suy ra: \(\dfrac{2}{5}< A< \dfrac{8}{9}\)

15 tháng 4 2018

Ta có : 

\(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};...;\frac{1}{9^2}>\frac{1}{9.10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{1}{2}-\frac{1}{10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{5}{10}-\frac{1}{10}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}>\frac{4}{10}=\frac{2}{5}\left(1\right)\)

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{9^2}< \frac{1}{8.9}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}< 1-\frac{1}{9}=\frac{8}{9}\left(2\right)\)

Từ ( 1 ) , ( 2 ) => ĐPCM 

Chúc bạn học tốt !!! 

15 tháng 4 2018

Đề sai bạn nhé : 

Đề đúng : 

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{9^2}\)

CM :  \(\frac{2}{5}< A< \frac{8}{9}\)

5 tháng 8 2015

Ta có S=1/2^2+1/3^2+1/4^2+...+1/9^2 
           <1/2²+1/2*3+1/3*4+....+1/8*9 
           =1/2²+1/2-1/3+1/3-1/4+....+1/8-1/9 
           =1/4+1/2-1/9=23/36<32/36=8/9 (♪) 
Ta lại có S=1/2^2+1/3^2+1/4^2+...+1/9^2 
                >1/2²+1/3*4+1/4*5+....+1/9*10 
                =1/2²+1/3-1/4+1/4-1/5+........+1/9-1/10 
                =1/2²+1/3-1/10 
                =19/20>8/20=2/5 ( ♫) 
                Từ (♪)( ♫) cho ta đpcm

29 tháng 1 2016

Đpcm là j thế bạn

 

1 tháng 4 2016

copy à

câu nào cũng trả lời.trốn học à

14 tháng 4 2018

2. \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2}{9}\)

\(\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2}{9}\)

\(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2}{9}\)

\(2.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{x.\left(x+1\right)}\right)=\dfrac{2}{9}\)

\(2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)

\(2.\left(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{2}{9}\right)\)

\(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{2}{9}:2\)

\(\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)

\(\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)

\(\dfrac{1}{x+1}=\dfrac{1}{18}\)

\(\Rightarrow x+1=18\)

\(\Rightarrow x=17\)

14 tháng 4 2019

S<1/2^2 + 1/2.3 + 1/3.4 +...+ 1/8.9

S<1/4 + 1/2 - 1/3 + 1/3 - 1/4+...+1/8 - 1/9

S<1/4 + 1/2 - 1/9

S<23/36<8/9 (1)

Mặt khác: S>1/2^2 + 1/3.4 + ...+ 1/9*10

S>1/4 + 1/3 - 1/4 + ... + 1/9 - 1/10

S>1/4 + 1/3 - 1/10

S>29/60>2/5 (2)

Từ (1),(2)

=> 2/5<S<8/9

17 tháng 4 2019

thanksshiha

24 tháng 6 2015

ta có A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\) <   \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(1-\frac{1}{9}\)

\(\frac{8}{9}\)

suy ra A < \(\frac{8}{9}\)

 ta có A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)j> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

=  \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(\frac{1}{2}-\frac{1}{10}\)

\(\frac{2}{5}\)

suy ra A >\(\frac{2}{5}\)