Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số các số hạng của A là :
( 99 - 1 ) : 1 + 1 = 99 ( số )
Tổng A là :
( 99 + 1 ) . 99 : 2 = 4950
Vậy tổng A = 4950 .
C=1*2+2*3+3*4+...+98*99
C=2+6+12+...+9702
C=2+9702
C=9704
vay C=9704
D=(1*99+2*99+3*99+...+99*99)-(1*2+2*3+3*4+...+98*99)
D=(99+198+297+...+9801)-(2+6+12+...+9702)
D=(99+9801)-(2+9702)
D=9900-9704
D=196
vay D=196
ai di qua dong tinh thi nho h cho minh nhe
3A=1.2.3+2.3.(4-1)+.............+98.99.(100-97)+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+...........+98.99.100-97.98.99+99.100.101-98.99.100
3A=99.100.101
A=99.100.101:3
A=333300
Ta có : 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 98.99.3 + 99.100.3
=> 3A = 1.2.( 3 - 0 ) + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + ..... + 98.99.( 100 - 97 ) + 99.100.( 101 - 98 )
=> 3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100
=> 3A = ( 1.2.3 + 2.3.4 + 3.4.5 + ..... + 98.99.100 + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ..... + 98.99.100 )
=> 3A = 99.100.101 - 0.1.2
=> 3A = 99.100.101
=> A = 33.100.101
=> A = 333300
Đặt A= 1.2 + 2.3 + 3.4 + ...+ 99.100
3A = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3A= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3A= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3A = 99.100.101 3S = 3.33.100.101
A=33.100.101= 333300
A= 1.2 + 2.3 + 3.4 + ...+ 99.100
3A = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3A= 1.2.3+2.3﴾4‐1﴿+3.4﴾5‐2﴿+...+98.99﴾100‐97﴿+99.100﴾101‐98﴿
3A= 1.2.3+2.3.4‐1.2.3+3.4.5‐2.3.4+...‐97.98.99+99.100.101‐98.99.100
3A = 99.100.101 3S = 3.33.100.101
A=33.100.101= 333300
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
vì \(\frac{99}{100}< 1\)
nên \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}< 1\)
Vậy A<1
Áp dụng công thức ta có :
\(A=1.2+2.3+3.4+...+99.100=\frac{99.100.101}{3}=333300\)
a = 9/1.2 + 9/2.3 + 9/3.4 + ... + 9/98.99 + 9/99.100
a = 9.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/98.99 + 1/99.100)
a = 9.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)
a = 9.(1 - 1/100)]
a = 9.99/100
a = 891/100
\(a=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=9.\left(1-\frac{1}{100}\right)\)
\(=9.\)\(\frac{99}{100}\)
\(=\frac{891}{100}\)
\(A=1.2+2.3+...+98.99\)
\(3A=1.2.3+2.3.\left(4-1\right)+...+98.99.\left(100-97\right)\)
\(=1.2.3+2.3.4-1.2.3+...+98.99.100-97.98.99\)
\(=98.99.100\)
\(A=\frac{98.99.100}{3}=323400\)