K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
28 tháng 10 2021

\(A=1.2+2.3+...+98.99\)

\(3A=1.2.3+2.3.\left(4-1\right)+...+98.99.\left(100-97\right)\)

\(=1.2.3+2.3.4-1.2.3+...+98.99.100-97.98.99\)

\(=98.99.100\)

\(A=\frac{98.99.100}{3}=323400\)

Số các số hạng của A là :

( 99 - 1 ) : 1 + 1 = 99 ( số )

Tổng A là :

( 99 + 1 ) . 99 : 2 = 4950

Vậy tổng A = 4950 .

27 tháng 9 2017

Bạn nhân 3 lên

20 tháng 4 2016

C=1*2+2*3+3*4+...+98*99

C=2+6+12+...+9702

C=2+9702

C=9704

vay C=9704

D=(1*99+2*99+3*99+...+99*99)-(1*2+2*3+3*4+...+98*99)

D=(99+198+297+...+9801)-(2+6+12+...+9702)

D=(99+9801)-(2+9702)

D=9900-9704

D=196

vay D=196

ai di qua dong tinh thi nho h cho minh nhe

20 tháng 2 2016

3A=1.2.3+2.3.(4-1)+.............+98.99.(100-97)+99.100.(101-98)

3A=1.2.3+2.3.4-1.2.3+...........+98.99.100-97.98.99+99.100.101-98.99.100

3A=99.100.101

A=99.100.101:3

A=333300

20 tháng 2 2016

Ta có : 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 98.99.3 + 99.100.3

=> 3A = 1.2.( 3 - 0 ) + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + ..... + 98.99.( 100 - 97 ) + 99.100.( 101 - 98 )

=> 3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100

=> 3A = ( 1.2.3 + 2.3.4 + 3.4.5 + ..... + 98.99.100 + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ..... + 98.99.100 )

=> 3A = 99.100.101 - 0.1.2

=> 3A = 99.100.101

=> A = 33.100.101

=> A = 333300

20 tháng 2 2016

Đặt A= 1.2 + 2.3 + 3.4 + ...+ 99.100
 3A = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3A= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3A= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3A = 99.100.101  3S = 3.33.100.101 
 A=33.100.101= 333300

20 tháng 2 2016

A= 1.2 + 2.3 + 3.4 + ...+ 99.100

3A = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3

3A= 1.2.3+2.3﴾4‐1﴿+3.4﴾5‐2﴿+...+98.99﴾100‐97﴿+99.100﴾101‐98﴿  

3A= 1.2.3+2.3.4‐1.2.3+3.4.5‐2.3.4+...‐97.98.99+99.100.101‐98.99.100

3A = 99.100.101 3S = 3.33.100.101

A=33.100.101= 333300

8 tháng 4 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

vì \(\frac{99}{100}< 1\)

nên \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\)

8 tháng 4 2017

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}< 1\)

Vậy A<1

18 tháng 7 2015

Áp dụng công thức ta có :

\(A=1.2+2.3+3.4+...+99.100=\frac{99.100.101}{3}=333300\)

18 tháng 7 2015

A=1.2+2.3+3.4+4.5+.....+98.99+99.100 Rút gọn đi ta còn:

A=1+100

=>A=101

 

18 tháng 1 2018

adct: (n(n+1)(n+2))/3 =>((98(98+1)(98+2))/3=323400

13 tháng 6 2016

a = 9/1.2 + 9/2.3 + 9/3.4 + ... + 9/98.99 + 9/99.100

a = 9.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/98.99 + 1/99.100)

a = 9.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/98 - 1/99 + 1/99 - 1/100)

a = 9.(1 - 1/100)]

a = 9.99/100

a = 891/100

\(a=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
      \(=9.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
      \(=9.\left(1-\frac{1}{100}\right)\)
      \(=9.\)\(\frac{99}{100}\)
      \(=\frac{891}{100}\)