K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=1\cdot2+2\cdot3+3\cdot4+4\cdot5+...+99\cdot100\)

\(3A=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+99\cdot100\cdot3\)

\(3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)

\(3A=1\cdot2\cdot3-0+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...99\cdot100\cdot101-98\cdot99\cdot100\)

\(3A=98\cdot99\cdot100\Rightarrow A=\frac{98\cdot99\cdot100}{3}=...\)

6 tháng 5 2016

A = 1.2 + 2.3 + 3.4 + ....... + 99.100

3A = 1.2.3 + 2.3.3 + 3.4.3 + ....... + 99 . 100 . 3

3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2)  +.... + 99.100.(101-98)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 99 . 100 . 101 - 98 . 99 . 100

3A = (1.2.3 - 1.2.3) + (2.3.4-2.3.4) + ... + (98.99.100 - 98.99.100) + 99  . 100 . 101

3A = 99 . 100 . 101 = 999900

A = 999900 : 3 = 333300

A=1*2+2*3+3*4+...+99*100

A=100*101*102:3

A=343400(công thức)

 

 

26 tháng 1 2017

A = 1.2+2.3+3.4+......+99.100 
Gấp A lên 3 lần ta có: 
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3 
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98) 
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100 
A . 3 = 99.100.101 
A = 99.100.101 : 3 
A = 33.100.101 
A = 333 300

30 tháng 5 2016

\(\text{Ta có: A = 1.2+2.3+3.4+4.5+...+99.100 }\)

=>  3A = 3.(1.2+2.3+3.4+4.5+...+99.100)

=>  3A = 1.2.(3 - 0) +2.3.(4 - 1) + 3.4.(5-2) + ........ + 99.100.(101 - 98)

=>  3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .......... + 99.100.101

=>  3A = 99.100.101

\(\Rightarrow A=\frac{99.100.101}{3}=333300\)

k mình nếu đúng OK

30 tháng 5 2016

Dãy số trên có số lượng các số là :

       (99,100 - 1,2) : 1,1 + 1 = 90 (số)

A = (1,2 + 99,100) x 90 : 2 = 4513,5

             Đáp số : A = 4513,5.

18 tháng 7 2015

Áp dụng công thức ta có :

\(A=1.2+2.3+3.4+...+99.100=\frac{99.100.101}{3}=333300\)

18 tháng 7 2015

A=1.2+2.3+3.4+4.5+.....+98.99+99.100 Rút gọn đi ta còn:

A=1+100

=>A=101

 

12 tháng 9 2015

gọi tổng là S ta có

3S=1.2.3-0.1.2+2.3.4-1.2.3+......+99.100.101-98.99.100

=>3S=98.99.100

=>S=\(\frac{98.99.100}{3}=323400\)

22 tháng 7 2021

`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`

`3S =  1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`

`3S =  1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`

`3S =  99.100.101`

`S = 33.100.101`

`S = 333300`

3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100

=99.100.101

S=33.100.101

=333300

9 tháng 9 2018

A = 1.2 + 2.3 + 3.4 + ... + 99.100

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3

3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) +...+ 99.100.(101-98)

3A = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100

3A = 99.100.101

A = 333300

23 tháng 6 2015

nhân 3 vào mỗi hạng tử ta được:

3*(1.2+2.3+3.4+...+99.100)

= 1.2.(3-0)+ 2.3.(4-1)+ 3.4.(5-2)+... + 99.100.(101-98)

=1.2.3 + 2.3.4 -1.2.3 + 3.4.5 -2.3.4 +... + 99.100.101 - 98.99.100

= 99.100.101

Vậy tổng ban đầu 99.100.101/3= 33.100.101

Vậy tổng trên chia hết cho 2;3;4;5;10