Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(A=1-\frac{1}{2^{2016}}< 1\)
Easy mà =)))
Ta thấy: \(\frac{1}{50}>\frac{1}{100}\); \(\frac{1}{51}>\frac{1}{100}\);....;\(\frac{1}{99}>\frac{1}{100}\)
Mà từ 50 - 99 có 50 số nên ta có 50 phân số 100
Cộng theo từng vế,ta được:
\(S=\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}^{\left(đpcm\right)}\) (do có 50 phân số 1/100)
+ Nếu n chẵn => n+3 lẻ và n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n lẻ => n+3 chẵn và n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)
\(A< \frac{1}{4}-\frac{1}{100}\)
\(A< \frac{6}{25}< \frac{1}{4}\)
\(2A=\frac{2}{1.3}+\frac{2}{2.4}+\frac{2}{3.5}+......+\frac{2}{7.9}+\frac{2}{8.10}\)
\(2A=\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{7.9}\right)+\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{8.10}\right)\)
\(2A=\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{7}-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{8}-\frac{1}{10}\right)\)
\(2A=\left(\frac{1}{1}-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(2A=\frac{8}{9}+\frac{2}{5}=\frac{58}{45}\)
\(A=\frac{58}{45}.\frac{1}{2}=\frac{29}{45}\)
Dễ thế mà cũng phải hỏi, ở trong SBT toán 6 có hết mà! còn bài 3 là ở trong SGK toán 6, bọn cậu học qua chương trình rùi mà? nếu mà học lớp 6