Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S = 1 + 5 + 5^2 + ... + 5^20
S = (1 + 5) + (5^2 + 5^3) + ... + (5^18 + 5^19) + 5^20
S = (1 + 5) + 5^2.(1 + 5) + ... + 5^18.(1 + 5) + 5^20
S = 6 + 5^2.6 + ... + 5^18.6 + 5^20
S = 6.(1 + 5^2 + ... + 5^18) + 5^20
Mà 6.(1 + 5^2 + ... + 5^18) chia hết cho 6 mà 5^20 có chữ số tận cùng là 5, là số lẻ nên không chia hết 6.
Vậy S không chia hết cho 6
b) S = 1 + 5 + 5^2 + ... + 5^20
S = (1 + 5 + 5^2) + ... + (5^18 + 5^19 + 5^20)
S = (1 + 5 + 5^2) + ... + 5^18.(1 + 5 + 5^2)
S = 31 + ... + 5^18.31
S = 31.(1 + ... + 5^18) chia hết cho 31 => S chia hết cho 31.
2. a) abab : ab = (100ab + ab) : ab = 100ab : ab + ab : ab = 100 + 1 = 101.
b) abcabc : abc = (1000abc + abc) : abc = 1000abc : abc + abc : abc = 1000 + 1 = 1001.
a)
S bằng 1+5+52+53+...+520
S bằng 1+(5+52)+(53+54)+...+(519+520)
S bằng 1+5.(1+5)+53.(1+5)+...+519.(1+5)
S bằng 1+5.6+53.6+...+519.6
S bằng 1+6.(5+53+...+519)
Suy ra S chia cho 6 dư 1.
Ta có:
A=\(\frac{1}{1.101}+\frac{1}{2.102}+...+\frac{1}{25.125}\)
=\(\frac{1}{100}\left(\frac{100}{1.101}+\frac{100}{2.102}+...+\frac{100}{25.125}\right)\)
=\(\frac{1}{100}\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{25}-\frac{1}{125}\right)\)
=\(\frac{1}{100}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]\)
B=\(\frac{1}{1.26}+\frac{1}{2.27}+...+\frac{1}{100.125}\)
=\(\frac{1}{25}\left(\frac{25}{1.26}+\frac{25}{2.27}+...+\frac{25}{100.125}\right)\)
=\(\frac{1}{25}\left(1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+...+\frac{1}{100}-\frac{1}{125}\right)\)
=\(\frac{1}{25}\left[\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{125}\right)\right]\)
=\(\frac{1}{25}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)+\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}\right)-\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]\)
= \(\frac{1}{25}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]\)
=> \(\frac{A}{B}\)=\(\frac{\frac{1}{100}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]}{\frac{1}{25}\left[\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{125}\right)\right]}\)=\(\frac{1}{\frac{100}{\frac{1}{25}}}\)=\(\frac{1}{100}\cdot25=\frac{25}{100}=\frac{1}{4}\)