Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (-1)(-2)(-3) ... (-2009) là tích của 2009 số âm nên tích của chúng nhỏ hơn 0.
Vậy: (-1)(-2)(-3) ... (-2009) < 0
Ta có : (-1).(-2).(-3)...(-10) là tích của 10 số âm nên tích của chúng là một số dương.
Do đó: (-1)(-2)(-3) ... (-10) = 1.2.3 ... 10
2:
A=-(1/4-1/5+1/5-1/6+...+1/9-1/10)
=-(1/4-1/10)
=-1/4+1/10
=-5/20+2/20=-3/20
Ta có : B= 27+58.26
= 27+58.(27-1)
=27+58.27-58
=27.58-31
Ta có : -31<-1
\(\Rightarrow\)27.58-31<27.58-1
Vậy A>B
\(\dfrac{1}{38}>\dfrac{1}{40}>\dfrac{1}{42}>...>\dfrac{1}{50}\)
=>\(\dfrac{1}{38}+\dfrac{1}{40}+\dfrac{1}{42}+\dfrac{1}{44}+\dfrac{1}{46}+\dfrac{1}{48}+\dfrac{1}{50}< 7\cdot\dfrac{1}{38}=\dfrac{7}{38}< 1\)
Vậy tổng trên bé hơn 1
A=-1-3-5-...-2017
=-(1+3+5+...+2017)
Xét tổng B=1+3+5+...+2017
Tổng B có:(2017-1):2+1=1009(số hạng)
Tổng B=\(\dfrac{\left(2017+1\right)\cdot1009}{2}=1009\cdot1009=1018081\)
=>A=-B=-1018081
\(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{100.101.102}\)
\(\Rightarrow2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{100.101.102}\)
\(\Rightarrow2M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{100.101}-\frac{1}{101.102}\)
\(\Rightarrow2M=\frac{1}{1.2}-\frac{1}{101.102}\)
\(\Rightarrow M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{101.102}\right)=1-\frac{1}{202.102}< 1\)
Vậy M < 1
Ta có : A=1/11+1/12+1/13+1/14+...+1/20
=>A>1/20+1/20+1/20+...+1/20(10 số hạng 1/20)
=>A>1/20.10=1/2
Vậy A>1/2