Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)
\(A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97\)(phá ngoặc)
=> A là số dương
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)
Trong 2.3.4.....98 có 11.9 = 99 nên A chia hết cho 99
b) Khi quy đồng mẫu lên tính B thì b là tích từ 2 đến 96(mẫu số chung)
Ta sẽ có:
B = \(\frac{a}{2.3.....96}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{96}\)
=>\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\right)2.3.4....96\)
Bạn CMTT như câu a là cũng ra
Chúc bạn học tốt
tớ cũng có đề bài giống nguyễn thị bích ngọc các cậu giải cho tớ nhé
Mình có cách này ngắn gọn, bạn xem thử:
a) Ta ko nói đến số 1 . Vì 2 lũy thừa lên thì dãy này chắc chắn chia hết cho 2, mà chia hết cho 2 thì sẽ là số chẵn, số chẵn + 1 = số lẻ.
=> Dãy trên ko chia hết cho 2
b) Số chia hết cho 5 là số có chữ số tận cùng là số 0 hoặc 5
Ta gọi dãy 22 + 24 + 26 +.......+ 298 là B
B = 22 + 24 + 26 + 28 + 210 + ......... + 298
B = 4 + 16 + 64 + 256 + 1024 +.........
Ta thấy dãy trên có các số hạng có chữ số tận cùng lặp lại 4, 6, 4, 6. Số 298 có chữ số tận cùng là 4.
B = 4 + ..6 + ...4 +...6 +....4 +.........+ .....4
B = ....0 + ....0 + ...0 +...........+ .....4
B = ......4
A = 1 + B
A = 1 + ....4 = .....5
=> A chia hết cho 5
ta có A=
2A=2(1+22+24+26+28+.........+298)
2A= 22+24+26+28+.........+298+2100
A=
ta có 2A-A=A=( 22+24+26+28+.........+298+2100)-(1+22+24+26+28+.........+298)
A=-1
ta thấy là số chẵn
suy ra là số lẻ
suyra 2100 -1 không chia hết cho 2
suy ra A không chia hết cho A
Ta có\(M=\left[\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\right].2.3...98\)
\(=\left[\frac{99}{1.98}+\frac{99}{2.97}+...+\frac{99}{49.50}\right].2.3...98=99\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right).2.3...98\)
\(=99\left(\frac{k_1+k_2+...+k_{49}}{1.2.3...98}\right).2.3...98\left(k_1,k_2...k_{49}\varepsilonℕ^∗\right)=99\left(k_1+k_2+...+k_{49}\right)⋮99\Rightarrow M⋮99\left(đpcm\right)\)
Thầy dạy bọn mày số nguyên tố và hợp số chưa
Bài này tao ko học
Khó nhỉ
Hiểu bài ko
Chế đang ngồi cắn bút
Chán quá lôi văn với GDCD ra làm
Tối nay đi học rồi
Lo quá, vẫn chưa la,f xong bài
p>3=>p=2k+1
=>(p-1)(p+1)=(2k+1-1)(2k+1+1)=2k.2(k+1)=4k(k+1)
k;k+1 là 2 số tự nhiên liên tiếp=>1 trong 2 số chia hết cho 2
=>k(k+1) chia hết cho 2
=>k(k+1)=2q
=>(p-1)(p+1)=4.2q=8q chia hết cho 8
p>3=>p=3k+1;3k+2
xét p=3k+1=>(p-1)(p+1)=(3k+1-1)(3k+1+1)=3k(3k+2) chia hết cho 3(1)
xét p=3k+2=>(p-1)(p+1)=(3k+2-1)(3k+2+1)=(3k+1)(k+1)3 chia hết cho 3(2)
từ (1) và (2)=>(p-1)(p+1) chia hết cho 3
vì (3;8)=1=>(p-1)(p+1) chia hết cho 24
=>đpcm
Bài 1
4n+5 \(⋮\) 2n+1
Ta có 4n+5 = 2(2n+1) + 3
Mà 2 (2n+1) \(⋮\) 2n+1 để 4n+5 \(⋮\) 2n+1
Thì => 3\(⋮\)2n+1 hay 2n+1 \(\in\) Ư (3(={1;3}
Ta có bảng sau
2n+1 | 1 | 3 |
n | 0 | 1 |
Vậy n\(\in\) {0;1}
Bài 2 :
a, chứng minh A chia hết cho 3
A = 21 + 22 + ...+ 22010
A = (21 +22 ) + (23 + 24 ) + ...+ (22009 + 22010 )
A= 21(1+2) + 23(1+2) + .....+ 22009(1+3)
A = 21 .3 + 23.3+....+22009.3
A = 3(21 + 23 + ...+ 22009) \(⋮\) 3
=> đpcm
b, chứng minh chia hết cho 7
A = 21 + 22 + ...+ 22010
A = ( 21 + 22 + 23 ) + .....+ (22008 + 22009 + 22010)
A = 21(1+2+22 ) + ....+ 22008(1+2+22)
A = 21.7 + ....+22008.7
A = 7(21+ ...+ 22008) \(⋮\) 7
=> đpcm
\(4n+5⋮2n+1\)
\(2\left(2n+1\right)+3⋮2n+1\)
\(3⋮2n+1\)hay \(2n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
2n + 1 | 1 | 3 |
2n | 0 | 2 |
n | 0 | 1 |
\(A=2+2^2+...+2^{2010}\)
\(=2\left(1+2\right)+...+2^{2019}\left(1+2\right)\)
\(=2.3+...+2^{2019}.3=3\left(2+...+2^{2019}\right)⋮3\)
hay \(=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=2.7+...+2^{2008}.7=7\left(2+...+2^{2008}\right)⋮7\)
Nên ta có đpcm
Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối
ta được :
( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )
= 99/1.98+99/2.97+...+99/49.50
gọi các thừa số phụ là k1, k2, k3, ..., k49 thì
A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49) x 2.3.4....97.98
= 99.(k1+k2+...+k49)
=> A chia hết cho 49 (1)
b)
Cộng 96 p/s theo từng cặp :
a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)
.................................................. ( làm tiếp nhé )
mỏi woa
Thùy Trang giỏi quá!!!