K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2016

Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối

ta được :

( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )

= 99/1.98+99/2.97+...+99/49.50

gọi các thừa số phụ là k1, k2, k3, ..., k49 thì

A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49)  x 2.3.4....97.98

= 99.(k1+k2+...+k49)

=> A chia hết cho 49               (1)

b) 

Cộng 96 p/s theo từng cặp :

a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)

.................................................. ( làm tiếp nhé )

mỏi woa

1 tháng 4 2017

Thùy Trang giỏi quá!!!

23 tháng 2 2019

Ta thấy 

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)

\(A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97\)(phá ngoặc)

=> A là số dương 

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)

Trong 2.3.4.....98 có 11.9 = 99 nên A chia hết cho 99 

b) Khi quy đồng mẫu lên tính B thì b là tích từ 2 đến 96(mẫu số chung)

Ta sẽ có:

B = \(\frac{a}{2.3.....96}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{96}\)

=>\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\right)2.3.4....96\)

Bạn CMTT như câu a là cũng ra

Chúc bạn học tốt

Cảm ơn bạn.Bạn cho mk kb vs bạn nhé.

11 tháng 10 2015

tớ cũng có đề bài giống nguyễn thị bích ngọc các cậu giải cho tớ nhé

14 tháng 10 2015

Ai hởHoàng Quốc Việt

13 tháng 10 2016

Mình có cách này ngắn gọn, bạn xem thử:
a) Ta ko nói đến số 1 . Vì 2 lũy thừa lên thì dãy này chắc chắn chia hết cho 2, mà chia hết cho 2 thì sẽ là số chẵn, số chẵn + 1 = số lẻ. 
=> Dãy trên ko chia hết cho 2
b) Số chia hết cho 5 là số có chữ số tận cùng là số 0 hoặc 5
Ta gọi dãy 22 + 24 + 26 +.......+ 298 là B
B = 22 + 2+ 26 + 28 + 210 + ......... + 298
B = 4 + 16 + 64 + 256 + 1024 +.........
Ta thấy dãy trên có các số hạng có chữ số tận cùng lặp lại 4, 6, 4, 6. Số 298 có chữ số tận cùng là 4.
B = 4 + ..6 + ...4 +...6 +....4 +.........+ .....4
B =   ....0   +     ....0    +     ...0 +...........+ .....4
B = ......4
A = 1 + B 
A = 1 + ....4 = .....5
=> A chia hết cho 5
 

12 tháng 10 2016

ta có A=

        2A=2(1+22+24+26+28+.........+298)

          2A=  22+24+26+28+.........+298+2100

          A=

ta có 2A-A=A=( 22+24+26+28+.........+298+2100)-(1+22+24+26+28+.........+298)

                  A=-1
ta thấy là số chẵn

suy ra  là số lẻ

suyra 2100 -1 không chia hết cho 2

suy ra A không chia hết cho A

4 tháng 3 2018

Ta có\(M=\left[\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\right].2.3...98\)

\(=\left[\frac{99}{1.98}+\frac{99}{2.97}+...+\frac{99}{49.50}\right].2.3...98=99\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right).2.3...98\)

\(=99\left(\frac{k_1+k_2+...+k_{49}}{1.2.3...98}\right).2.3...98\left(k_1,k_2...k_{49}\varepsilonℕ^∗\right)=99\left(k_1+k_2+...+k_{49}\right)⋮99\Rightarrow M⋮99\left(đpcm\right)\)

30 tháng 9 2016

Thầy dạy bọn mày số nguyên tố và hợp số chưa

Bài này tao ko học

Khó nhỉ

Hiểu bài ko

Chế đang ngồi cắn bút

Chán quá lôi văn với GDCD ra làm

Tối nay đi học rồi

Lo quá, vẫn chưa la,f xong bài

30 tháng 9 2016

dễ lắm. các em tự suy nghĩ và logic lên 1 tí là ra ngay à TRỊNH THỊ QUỲNH

Chúc em học tốt

 

p>3=>p=2k+1

=>(p-1)(p+1)=(2k+1-1)(2k+1+1)=2k.2(k+1)=4k(k+1)

k;k+1 là 2 số tự nhiên liên tiếp=>1 trong 2 số chia hết cho 2

=>k(k+1) chia hết cho 2

=>k(k+1)=2q

=>(p-1)(p+1)=4.2q=8q chia hết cho 8

p>3=>p=3k+1;3k+2

xét p=3k+1=>(p-1)(p+1)=(3k+1-1)(3k+1+1)=3k(3k+2) chia hết cho 3(1)

xét p=3k+2=>(p-1)(p+1)=(3k+2-1)(3k+2+1)=(3k+1)(k+1)3 chia hết cho 3(2)

từ (1) và (2)=>(p-1)(p+1) chia hết cho 3

vì (3;8)=1=>(p-1)(p+1) chia hết cho 24

=>đpcm

10 tháng 8 2016

câu 1 bó, câu 2 là 6

1 tháng 1 2021

Bài 1 

4n+5 \(⋮\) 2n+1 

Ta có 4n+5 = 2(2n+1) + 3 

Mà 2 (2n+1)  \(⋮\) 2n+1  để 4n+5 \(⋮\) 2n+1 

Thì => 3\(⋮\)2n+1 hay 2n+1 \(\in\) Ư (3(={1;3}

Ta có bảng sau 

2n+113
n01

Vậy n\(\in\) {0;1}

Bài 2  :

a, chứng minh A chia hết cho 3 

A =  21 + 22 + ...+ 22010

A = (21 +22 ) + (23 + 24 ) + ...+ (22009 + 22010 )

A= 21(1+2) + 23(1+2) + .....+ 22009(1+3)

A = 21 .3 + 23.3+....+22009.3

A = 3(21 + 23 + ...+ 22009\(⋮\) 3

=> đpcm 

b, chứng minh chia hết cho 7 

A = 21 + 22 + ...+ 22010

A = ( 21 + 22 + 23  ) + .....+ (22008 + 22009 + 22010)

A = 21(1+2+22 ) + ....+ 22008(1+2+22)

A =  21.7 + ....+22008.7

A = 7(21+ ...+ 22008\(⋮\) 7 

=> đpcm

1 tháng 1 2021

\(4n+5⋮2n+1\)

\(2\left(2n+1\right)+3⋮2n+1\)

\(3⋮2n+1\)hay \(2n+1\inƯ\left(3\right)=\left\{1;3\right\}\)

2n + 113
2n02
n01

\(A=2+2^2+...+2^{2010}\)

\(=2\left(1+2\right)+...+2^{2019}\left(1+2\right)\)

\(=2.3+...+2^{2019}.3=3\left(2+...+2^{2019}\right)⋮3\)

hay \(=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2.7+...+2^{2008}.7=7\left(2+...+2^{2008}\right)⋮7\)

Nên ta có đpcm