Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mn xem nhanh nhanh cho mik chút nha ai đúng và nhanh nhất mik k cảm ơn mn nhìu
a) \(A\left(x\right)=-1+5^6-6x^2-5-9x^6+4x^4-3x^2\)
\(=-9x^6+4x^4-\left(3x^2+6x^2\right)+\left(5^6-1-5\right)\)
\(=-9x^6+4x^4-9x^2+\left(5^6-1-5\right)-15619\)
\(B\left(x\right)=2-5x^2+3x^4-4x^2+3x+x^4-4x^6-7x\)
\(=-4x^6+\left(3x^4+x^4\right)-\left(5x^2+4x^2\right)+\left(3x-7x\right)+2\)
\(=-4x^6+4x^4-9x^2-4x+2\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(-9x^6+4x^4-9x^2-15619\right)-\left(-4x^6+4x^4-9x^2-4x+2\right)\)
\(=-9x^6+4x^4-9x^2-15619+4x^6-4x^4+9x^2+4x-2\)
\(=-5x^6+4x-15621\)
Hình như C(x) vô nghiệm
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
a,A(x)=-1+5x\(^6\)-6x\(^2\)-5-9x\(^6\)+4x\(^4\)-3x\(^2\)
=(-1-5)+(5x\(^6\)-9x\(^6\))+4x\(^4\)+(-6x\(^2\)-3x\(^2\))
=-6-4x\(^6\)+4x\(^4\)-9x\(^2\)
B(x)= 2-5x\(^2\)+3x\(^4\)-4x\(^2\)+3x+x\(^4\)-4x\(^6\)-7
=2-4x\(^6\)+(3x\(^4\)+x\(^4\))+(-5x\(^2\)-4x\(^2\))+(3x-7x)
=2-4x\(^6\)+4x\(^4\)-9x\(^2\)-4x b,* bậc của A(x) là 6 bậc của B(x) là 6 * Hệ số cao nhất của A(x) là -4 Hệ số cao nhất của B(x) là -4a) Ta có: A(x) = -1 + 56 - 6x2 - 5 - 9x6 + 4x4 - 3x2
= (-1 + 15625 - 5) + (-6x2 - 3x2 ) - 9x6 + 4x4
= 15619 - 9x2 - 9x6 + 4x4
Sắp xếp: A(x) = -9x6 + 4x4 - 9x2 + 15619
Lại có: B(x) = 2 - 5x2 + 3x4 - 4x2 + 3x + x4 - 4x6 - 7x
= 2 + (-5x2 - 4x2 ) + (3x4 +x4 ) - 4x6 + (3x - 7x)
= 2 - 9x2 + 4x4 - 4x6 - 4x
Sắp xếp: B(x) = -4x6 + 4x4 - 9x2 - 4x + 2
b) Ta có: A (x) = -9x6 + 4x4 - 9x2 + 15619
B (x) = -4x6 + 4x4 - 9x2 - 4x + 2
=> C(x) = -5x6 - 4x + 15617
Mk chỉ làm đc đến thế này thôi!!!
a) \(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)
\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
Vậy AMin = 1 khi x = 2
b) B = \(2x^2-4x-6=2\left(x^2-2x-3\right)=2\left(x^2-2x+1\right)-8=2\left(x-1\right)^2-8\)
\(\left(x-1\right)^2\ge0\forall x\Rightarrow2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2-8\ge-8\)
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
Vậy BMin = -8 khi x = 1
c) C = \(3x^2+9x+6=3\left(x^2+3x+2\right)=3\left(x^2+3x+\frac{9}{4}\right)-\frac{3}{4}=3\left(x+\frac{3}{2}\right)^2-\frac{3}{4}\)
\(\left(x+\frac{3}{2}\right)^2\ge0\forall x\Rightarrow3\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow3\left(x+\frac{3}{2}\right)^2-\frac{3}{4}\ge-\frac{3}{4}\forall x\)
Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2
Vậy CMin = -3/4 khi x = -3/2
d) D = \(5x^2+5x+1=5\left(x^2+x+\frac{1}{5}\right)=5\left(x^2+x+\frac{1}{4}\right)-\frac{1}{4}=5\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow5\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow5\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\forall x\)
Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2
Vậy DMin = -1/4 khi x = -1/2
a)
\(A=-1+5x^6-6x^2-5+9x^6+4x^2-3x^2\)
\(=-6+14x^6-5x^2\)
→ Sắp xếp: \(A=14x^6-5x^2-6\)
\(B=-6-5x^2+3x^4-5x^2+3x+x^4+14x^6-5x\)
\(=-6-10x^2+4x^4-2x+14x^6\)
→ Sắp xếp: \(B=14x^6+4x^4-10x^2-2x-6\)
b) \(A\left(x\right)+B\left(x\right)=14x^6-5x^2-6+14x^6+4x^4-10x^2-2x-6\)
\(=28x^6-15x^2+4x^4-2x-12\)
\(A\left(x\right)-B\left(x\right)=\left(14x^6-5x^2-6\right)-\left(14x^6+4x^4-10x^2-2x-6\right)\)
\(=14x^6-5x^2-6-14x^6-4x^4+10x^2+2x+6\)
\(=5x^2-4x^4+2x\)
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
a) Ta có: A = -1 + 5x6 - 6x2 - 5 - 9x2 + 4x4 - 3x2
= ( -1 - 5) + 5x6 + ( -6x2 - 9x2 - 3x2 ) + 4x4
= -6 + 5x6 - 18x2 + 4x4
=> A = 5x6 + 4x4 - 18x2 - 6
B = 2 -5x2 + 3x4 - 4x2 + 3x + x4 - 4x6 - 7x
= 2 + (-5x2 - 4x2 ) + ( 3x4 + x4 ) + (3x - 7x) - 4x6
= 2 - 9x2 + 4x4 - 4x - 4x6
=> B = -4x6 + 4x4 - 9x2 - 4x + 2
Lại có: B = -4x6 + 4x4 - 9x2 - 4x + 2
A = 5x6 + 4x4 - 18x2 - 6
C = B - A = -9x6 + 9x2 + 4x + 8