Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
Có bao nhiêu số tự nhiên có tính chất:
a. Là số chẵn và có hai chữ số (không nhất thiết khác nhau).
KQ: \(5\cdot9=45\) (số)
b. Là số lẻ và có hai chữ số (không nhất thiết khác nhau).
KQ: \(5\cdot9=45\) (số)
c. Là số lẻ và có hai chữ số khác nhau.
KQ: \(5\cdot8=40\) (số)
d. Là số chẵn và có hai chữ số khác nhau.
KQ: \(9+4\cdot8=41\) (số)
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
sửa lại câu b
Nếu e={1;3;5;7;9} thì a có 8 cách chọn; b có 8 cách chọn; c có 7 cách chọn; d có 6 cách chọn
Vậy có 8.8.7.6.5=13440 số thỏa mãn đề bài
Xin lỗi bạn nhé
a, Giả sử số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0\right)\)
- Chọn a có 9 cách.
- Chọn b, c, d, e có \(A^4_9\) cách
⇒ Có: \(9.A^4_9=27216\) (số)
b, Gọi số cần tìm là \(\overline{abcde}\) \(\left(a\ne b\ne c\ne d\ne e,a\ne0,e\in\left\{1,3,5,7,9\right\}\right)\)
- Chọn e có 5 cách.
- Chọn a có 8 cách.
- Chọn b, c, d có \(A^3_8\) cách.
⇒ Có \(5.8.A^3_8=13440\) (số)
a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 3 chữ số chẵn có C35 cách
Sắp xếp 6 chữ số này có 6! cách
Vậy có C35 . C35 . 6! số
TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 2 chữ số chẵn có C24 cách
Sắp xếp 5 chữ số có 5! cách
Vậy có C35 . C24 . 5! số
Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ
Cho tạp A={2,3,4,5,6,7,9}.có bao nhiêu chữ số tự nhiên đôi một khác nhau, là số lẻ và nhỏ hơn 600000
Gọi số đó là \(\overline{a_1a_2a_3a_4a_5a_6}\)
\(\Rightarrow a_1< 6\)
TH1: \(a_1=\left\{3;5\right\}\) (2 cách chọn)
\(\Rightarrow a_6\) có 3 cách chọn (lẻ và khác \(a_1\))
4 chữ số còn lại có \(A_5^4\) cách chọn
\(\Rightarrow2.3.A_5^4\) số
TH2: \(a_1=\left\{2;4\right\}\) (có 2 cách chọn)
\(\Rightarrow a_6\) có 4 cách chọn
4 chữ số còn lại có \(A_5^4\) cách chọn
Vậy có: \(2.3.A_5^4+2.4.A_5^4=1680\) số