Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\frac{x}{y}\Leftrightarrow n-2\ne0\Leftrightarrow n\ne2\)
b)
A là số nguyên khi \(n-2\inƯ_{-5}\)
\(\Rightarrow n-2\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{3;8;1;-3\right\}\)
Vậy \(n\in\left\{3;8;1;-3\right\}\)
Đặt BT là B
\(\Rightarrow B=3\left(1+3^2+3^2+3^3\right)+.......+3^{97}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow B=3.40+....+3^{97}.40\) chia hết cho 40
=> B chia hết cho 40
a/b=1+(a-b/b)
a+m/b+m=1+(a-b/b+m)
a-b=a-b=> so sánh mẫu
b+m>b=> a/b>a+m/b+m
bài 1
a, \(A=\frac{3}{x-1}\)
Để A thuộc Z suy ra 3 phải chia hết cho x-1
Suy ra x-1 thuộc ước của 3
Suy ra x-1 thuộc tập hợp -3;-1;1;3
Suy ra x tuộc tập hợp -2;0;2;4
"nếu ko thích thì lập bảng" mấy ccaau kia tương tự
\(a,\)\(1,\)\(A=\frac{3}{x-1}\)
\(A\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)\(\Rightarrow3\)\(⋮\)\(x-1\)
\(\Leftrightarrow x-1\inƯ_3\)
Mà \(Ư_3=\left\{1;3;-1;-3\right\}\)
\(...........\)
\(2,\)\(B=\frac{x-2}{x+3}\)
\(B\in Z\Leftrightarrow\frac{x-2}{x+3}\in Z\)\(\Rightarrow\frac{x+3-5}{x+3}\in Z\)\(\Rightarrow1-\frac{5}{x+3}\in Z\)
\(\Leftrightarrow\frac{5}{x+3}\in Z\)\(\Rightarrow5\)\(⋮\)\(x+3\)
Mà \(Ư_5=\left\{1;5;-1;-5\right\}\)
\(.....\)
\(3,\)\(C=\frac{x^2-1}{x+1}=\frac{\left(x-1\right)\left(x+1\right)}{x+1}=x-1\)
\(C\in Z\Leftrightarrow x-1\in Z\)
\(\Rightarrow x\in Z\)
a) \(\frac{23n}{n-1}=\frac{23n-23+23}{n-1}=\frac{23\left(n-1\right)+23}{n-1}=23+\frac{23}{n-1}\)
\(\Rightarrow n-1\inƯ\left(23\right)\Rightarrow n-1\in\left\{-23;-1;1;23\right\}\Rightarrow n\in\left\{-22;0;2;24\right\}\)
b) \(\frac{n^2+n+2}{n+3}=\frac{n^2+3n-2n-6+8}{n+3}=\frac{n\left(n+3\right)-2\left(n+3\right)+8}{n+3}=n-2+\frac{8}{n+3}\)
\(\Rightarrow n+3\inƯ\left(8\right)\Rightarrow n+3\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow n\in\left\{-11;-7;-5;-4;-2;-1;1;5\right\}\)