K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

Ta có:\(A=1+2+2^2+2^3+....+2^{2017}.\)

\(\Rightarrow2A=2^1+2^2+2^3+2^4+....+2^{2018}\)

\(\Rightarrow2A-A=\left(2^1+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2^1+2^2+2^3+...+2^{2017}\right)\)

\(\Rightarrow A=2^{2018}-1\)

\(\Rightarrow A=B\)

27 tháng 3 2020

351>350=925>825=275>270

27 tháng 3 2020

Vì 2017<2018 nên\(\frac{1}{2017}\)>\(\frac{1}{2018}\)

\(\frac{2}{2017}\)>\(\frac{1}{2018}\)

\(\frac{2015}{2017}\)=1-\(\frac{2}{2017}\)<1-\(\frac{1}{2018}\)=\(\frac{2017}{2018}\)

Vậy, \(\frac{2015}{2017}\)< \(\frac{2017}{2018}\)

27 tháng 5 2017

giup mk voi

27 tháng 5 2017

áp dụng kiến thức trong sách vở là làm được thôi bạn

28 tháng 10 2016

mình nhanh nhất nha bạn

28 tháng 10 2016

2^5 có nghĩa là bằng  32

6^2=  36

Vì  36> 32 nên   2^5 nhỏ hơn  6 ^2  

13 tháng 2 2018

Ta có: \(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)

\(\Leftrightarrow A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{10}}\)

        \(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

\(\Leftrightarrow B=\frac{\left[\left(20.100+16\right)\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

Ta có hai tổng A và B mới để so sánh:

\(A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)

\(B=\frac{\left[\left(20.100\right)+16\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)

 Tới đây đơn giản rồi. Bạn làm tiếp đi nhé! Mẹ mình bắt tắt máy không cho làm nên đành dừng lại ở đây thôi! Thông cảm :V