Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để chứng minh rằng A < 100, ta chia A thành 100 nhóm :
A = \(1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+...+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}}-1\right)\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số lớn nhất trong dấu ngoặc đó, ta được :
A < \(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+...+\frac{1}{2^{99}}.2^{99}=100\)
b) Để chứng minh rằng A > 50, ta thêm và bớt \(\frac{1}{2^{100}}\)rồi viết A dưới dạng sau :
A = \(1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{2^2}\right)+\left(\frac{1}{5}+...+\frac{1}{2^3}\right)+\left(\frac{1}{9}+...+\frac{1}{2^4}\right)+...+\left(\frac{1}{2^{99}+1}+...+\frac{1}{2^{100}}\right)-\frac{1}{2^{100}}\)
Thay các phân số trong mỗi dấu ngoặc bằng phân số nhỏ nhất trong dấu ngoặc đó, ta được :
A > \(1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100}}.2^{99}-\frac{1}{2^{100}}=1+\frac{1}{2}.100-\frac{1}{2^{100}}>50\)
A=1+12+13+14+⋯+12100−1=1+12+(13+14)+(15+⋯+18)+(19+⋯+116)+⋯+(1299+1+⋯+12100)−12100=1+12+(12+1+122)+(122+1+⋯+123)+(123+1+⋯+124)+⋯+(1299+1+⋯+12100)−12100>1+12+2.122+22.123+23.124+⋯+299.12100−12100=1+12+12+⋯+12−12100=1+100.12−12100=1+50−12100=50+1−12100>50𝐴=1+12+13+14+⋯+12100−1=1+12+(13+14)+(15+⋯+18)+(19+⋯+116)+⋯+(1299+1+⋯+12100)−12100=1+12+(12+1+122)+(122+1+⋯+123)+(123+1+⋯+124)+⋯+(1299+1+⋯+12100)−12100>1+12+2.122+22.123+23.124+⋯+299.12100−12100=1+12+12+⋯+12−12100=1+100.12−12100=1+50−12100=50+1−12100>50
Vậy A>50.