K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Cách 1:

TH 1: Chọn 2 điểm thuộc đường thẳng có 4 điểm

Chọn 2 điểm từ đường thẳng trên có \(C_4^2\) cách

Chọn 1 điểm từ đường thẳng còn lại có 5 cách

=> Số tam giác tạo thành là \(5.C_4^2 = 30\)

TH 2: Chọn 2 điểm thuộc đường thẳng có 5 điểm

Chọn 2 điểm từ đường thẳng dưới có \(C_5^2\) cách

Chọn 1 điểm từ đường thẳng còn lại có 4 cách

=> Số tam giác tạo thành là \(4.C_5^2 = 40\)

Vậy có tất cả 70 tam giác được tạo thành.

Cách 2: 

Số cách chọn 3 điểm bất kì là:  \(C_9^3 = 84\) cách

Số cách chọn 3 điểm thẳng hàng là: \(C_4^3 +C_5^3 =14 \) cách

=> Số cách chọn 3 điểm không thẳng hàng là: 84 - 14 = 70 (cách)

Do đó ta có thể có 70 tam giác.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Phương trình tham số của đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)

b) Thay \(t = 2\) vào phương trình\(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)  ta được \(\left\{ \begin{array}{l}x = 1 + 40.2 = 81\\y = 1 + 30.2 = 61\end{array} \right.\)

Vậy khi \(t = 2\) thì tọa độ của ô tô là \(\left( {81;61} \right)\)

Thay \(t = 4\) vào phương trình\(d:\left\{ \begin{array}{l}x = 1 + 40t\\y = 1 + 30t\end{array} \right.\)  ta được \(\left\{ \begin{array}{l}x = 1 + 40.4 = 161\\y = 1 + 30.4 = 121\end{array} \right.\)

Vậy khi \(t = 4\) thì tọa độ của ô tô là \(\left( {161;121} \right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Các làn đường song song với nhau: Đúng.

b) Các xe chạy theo cùng một hướng: Sai.

Trong hình 4.5: Có 3 xe chạy theo hướng từ trên xuống dưới, 2 xe chạy thep hướng từ dưới lên trên

c) Hai xe bất kì đều chạy theo cùng một hướng hoặc hai hướng ngược nhau: Đúng.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Gọi độ dài cạnh OB là cm \(\left( {x > 0} \right)\)

Theo giả thiết ta có \(AB = BC = OB - 1 = x - 1\)

Áp dụng định lý pitago trong tam giác vuông OAB  OBC ta có:

\(OC = \sqrt {O{B^2} + B{C^2}}  = \sqrt {{x^2} + {{\left( {x - 1} \right)}^2}}  = \sqrt {2{x^2} - 2x + 1} \)

\(OA = \sqrt {O{B^2} - A{B^2}}  = \sqrt {{x^2} - {{\left( {x - 1} \right)}^2}}  = \sqrt {2x - 1} \)

a) \(OC = 3OA \Rightarrow \sqrt {2{x^2} - 2x + 1}  = 3\sqrt {2x - 1} \)

\(\begin{array}{l} \Rightarrow 2{x^2} - 2x + 1 = 9\left( {2x - 1} \right)\\ \Rightarrow 2{x^2} - 20x + 10 = 0\end{array}\)

\( \Rightarrow \)\(x = 5 - 2\sqrt 5 \) và \(x = 5 + 2\sqrt 5 \)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} - 2x + 1}  = 3\sqrt {2x - 1} \) ta thấy cả hai đều thỏa mãn phương trình

Vậy khi \(OB = 5 - 2\sqrt 5 \) hoặc \(OB = 5 + 2\sqrt 5 \)thì \(OC = 3OA\)

b) \(OC = \frac{5}{4}OB \Rightarrow \sqrt {2{x^2} - 2x + 1}  = \frac{5}{4}x\)

\(\begin{array}{l} \Rightarrow 2{x^2} - 2x + 1 = \frac{{25}}{{16}}{x^2}\\ \Rightarrow \frac{7}{{16}}{x^2} - 2x + 1 = 0\end{array}\)\(\)

\( \Rightarrow x = \frac{4}{7}\) hoặc \(x = 4\)                

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} - 2x + 1}  = \frac{5}{4}x\) ta thấy cả hai nghiệm đều thỏa mãn phương trình

Vậy khi \(OB = \frac{4}{7}\) hoặc \(OB = 4\) (cm) thì  \(OC = \frac{5}{4}OB\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Một đoạn thẳng được tạo bởi 2 điểm bất kì

Nên để có một đoạn thẳng có điểm mút thuộc các điểm đã cho thì ta chọn 2 điểm bất kì từ 6 điểm đã cho, mỗi cách chọn 2 điểm từ 6 điểm đã cho là một tổ hợp chập 2 của 6, từ đó số đoạn thẳng có điểm đầu mút thuộc các điểm đã cho được tạo ra là:

                   \(C_6^2 = \frac{{6!}}{{2!.4!}} = 15\) (đoạn thẳng)

b) Mỗi tam giác được tạo bởi 3 điểm không thẳng hàng, nên để có một tam giác mà các đỉnh của nó là các điểm đã cho thì ta chọn 3 điểm bất kì từ 6 điểm đã cho, mỗi cách chọn 3 điểm từ 6 điểm là một tổ hợp chập 3 của 6, từ đó số tam giác có đỉnh thuộc các điểm đã cho là:

                             \(C_6^3 = \frac{{6!}}{{3!.3!}} = 20\) (tam giác)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Cách 1:

TH1: 2 điểm thuộc a và 1 điểm thuộc b

Số cách chọn 2 điểm thuộc đường thẳng a là \(C_3^2\) (cách chọn)

Số cách chọn 1 điểm thuộc đường thẳng b là: \(C_4^1\) (cách chọn)

=> Số tam giác tạo thành là: \(C_3^2 . C_4^1 = 12\)

TH2: 2 điểm thuộc b và 1 điểm thuộc a

Số cách chọn 2 điểm thuộc đường thẳng b là \(C_4^2\) (cách chọn)

Số cách chọn 1 điểm thuộc đường thẳng a là: \(C_3^1\) (cách chọn)

=> Số tam giác tạo thành là: \(C_4^2 + C_3^1 = 18\)

Vậy có tất cả 12 + 18 = 30 tam giác.

Cách 2:

Số cách chọn 3 điểm thuộc đường thẳng a là: \(C_3^3\) (cách chọn)

Số cách chọn 3 điểm thuộc đường thẳng b là: \(C_4^3\) (cách chọn)

Số cách chọn 3 điểm bất kì trong 7 điểm đã cho là: \(C_7^3\) (cách chọn)

Số cách chọn 3 điểm không thẳng hàng trong 7 điểm đã cho là: \(C_7^3 - C_4^3 - C_3^3 = 30\) (cách chọn)

Vậy số tam giác có thể có là : 30 (tam giác)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Có 7 trận: Tứ kết 1, Tứ kết 2, Tứ kết 3, Tứ kết 4, Bán kết 1, Bán kết 2, Chung kết.

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

Để xác định điểm M ta cần giải hệ phương trình gồm hai phương trình đường thẳng của hai đường thẳng a và b

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có vectơ \(\overrightarrow {OM} \)  biểu diễn theo hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) là: \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right)\)

b) Do tọa độ hai điểm A và B là: \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right)\) nên ta có:\(\overrightarrow {OA}  = \left( {{x_A},{y_A}} \right),\overrightarrow {OB}  = \left( {{x_B},{y_B}} \right)\)

Vậy \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {{x_A} + {x_B};{y_A} + {y_B}} \right) = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

Tọa độ điểm M chính là tọa độ của vectơ nên tọa độ M  là \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Từ giả thiết ta có:

\(AF = FB = ED\); \(AE = EC = FD\); \(BD = DC = EF\)

Từ đó dựa vào hình ta có:

a) Các vectơ bằng vectơ \(\overrightarrow {EF} \)là \(\overrightarrow {DB} \) và \(\overrightarrow {CD} \)

b) Các vectơ đối vectơ \(\overrightarrow {EC} \) là \(\overrightarrow {EA} \) và \(\overrightarrow {DF} \)