K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2015

Khi chia 8 STN cho 7 ta đc 8 giá trị dư

Mỗi số nhận đc 1 trong 7 giá trị : 0;1;2;3;4;5;6.Mà có 8 giá trị dư

=> Có 2 số có cùng số dư

=> hiệu hai số đó chia hết cho  7

Gọi số có 6 cs phải chứng minh là abcdeg ( a;b;c;d;e;g là chữ số ;a khác 0) 

gia su abc>deg ta co:

abcdeg=1000abc+deg

          = 1001abc-abc+deg

          = 7.143abc -(abc-deg)

Vi 7.143abc chia hết cho 7 :abc-deg chia hết cho 7(theo chứng minh).

=> abcdeg chia hết cho 7 (dpcm)

Giả sử deg>abc

.........bạn tự làm tiếp nha!

12 tháng 12 2016

abc va deg cua serry thieu gach dau

20 tháng 10 2020

vì một số chia hết cho 7 sẽ có số dư là 0, 1, 2, 3, 4, 5, 6. vậy trong 8 số tự nhiên bất kì sẽ có 2 số có cùng số dư khi chia cho 7

giả sử \(\overline{abc}\)và \(\overline{xyz}\) là hai số có 3 chữ số có cùng số dư khi chia cho 7,không mất tính tổng quát ta giả sử số dư đó là m với m thuộc từ 0 đến 6

khi đó: \(\overline{abc}\)=7k+mabc¯=7k+m  và \(\overline{xyz}\)=7q+m

cần chứng minh: \(\overline{abcxyz}\)chia hết cho 7

thật vậy: ta có \(\overline{abcxyz}\)=\(\overline{abc}.100+\overline{xyz}=\left(7k+m\right)=7000k+7q+1001m\)

nhận xét: 7000k, 7q , 1001m đều chia hết cho 7 nên suy ra \(\overline{abcxyz}\)chia hết cho 7

20 tháng 10 2020

https://olm.vn/hoi-dap/detail/94826564287.html

vào đó có câu trả lời tương tự nhé!

26 tháng 2 2021

Trong 14 stn có 3 chữ số chắc chắn có tồn tại 2 số chia cho 13 có cùng số dư nên hiệu của chúng chia hết cho 13 .

Gọi số có 6 chữ số chia hết cho 13 là abcdeg thì abc - deg \(⋮\)cho 13

Ta có : abcdeg + ( abc - deg ) = abcdeg + abc - deg 

= 1000 . abc + deg + abc - deg 

= ( 1000+ 1 ) . abc + ( deg - deg )

= 1001 . abc + 0 = 1001 . abc 

Vì 1001 chia hết cho 13 nên 1001 . abc chia hết cho 13

\(\Rightarrow\)abcdeg + ( abc - deg ) chia hết cho 13

Mà ( abc - deg ) chia hết cho 13 nên abcdeg chia hết cho 13 .

Vậy trong 14 số đó tồn tại 2 số mà khi viết liên tiếp nhau thì tao thành số có 6 chữ số chia hết cho 13 .

23 tháng 10 2015

a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11

Vậy ab+ba chia hết cho 11

b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9

Vậy ab - ba chia hết cho9