Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=x^2+y^2-2x+6y+12\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)
\(\Leftrightarrow A\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Vậy....
b/ \(B=-4x^2-9y^2-4x+6y+3\)
\(=-\left(4x^2+4x+1\right)-\left(9y^2+6y+1\right)+1\)
\(=-\left(2x+1\right)^2-\left(3y+1\right)^2+1\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(2x+1\right)^2\ge0\\\left(3y+1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\left(2x+1\right)^2\le0\\-\left(3y+1\right)^2\le0\end{matrix}\right.\)
\(\Leftrightarrow-\left(2x+1\right)^2-\left(3y+1\right)^2\le0\)
\(\Leftrightarrow B\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=-\frac{1}{3}\end{matrix}\right.\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
a)\(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)
\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}:\dfrac{2\left(x-3\right)}{3\left(x+1\right)}\)
\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)
\(=\dfrac{-\left(x-3\right)\left(9+3x+x^2\right)3\left(x+1\right)}{5\left(x+1\right)2\left(x-3\right)}\)
\(=\dfrac{-\left(9+3x+x^2\right)3}{10}\)
b)\(4x^2-16:\dfrac{3x+6}{7x-2}\)
\(=4\left(x^2-4\right):\dfrac{3\left(x+2\right)}{7x-2}\)
\(=4\left(x-2\right)\left(x+2\right)\cdot\dfrac{7x-2}{3\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)
c)\(\dfrac{3x^3+3}{x-1}:x^2-x+1\)
\(=\dfrac{3\left(x^3+1\right)}{x-1}:x^2-x+1\)
\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{x-1}\cdot\dfrac{1}{x^2-x+1}\)
\(=\dfrac{3\left(x+1\right)}{x-1}\)
d)\(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)
\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{\left(1-x\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)
\(=\dfrac{2\left(2x+3y\right)}{x-1}\cdot\dfrac{-\left(x-1\right)\left(1+x+x^2\right)}{\left(2x+3y\right)^2}\)
\(=\dfrac{-2\left(1+x+x^2\right)}{2x+3y}\)
a) \(\dfrac{27-x^3}{5x+5}:\dfrac{2x-6}{3x+3}\)
\(=\dfrac{27-x^3}{5x+5}.\dfrac{3x+3}{2x-6}\)
\(=\dfrac{\left(3-x\right)\left(9+3x+x^2\right)}{5\left(x+1\right)}.\dfrac{3\left(x+1\right)}{2\left(x-3\right)}\)
\(=-\dfrac{3\left(x-3\right)\left(x^2+3x+9\right)\left(x+1\right)}{10\left(x+1\right)\left(x-3\right)}\)
\(=-\dfrac{3\left(x^2+3x+9\right)}{10}\)
b) \(4x^2-16:\dfrac{3x+6}{7x-2}\)
\(=4x^2-16.\dfrac{7x-2}{3x+6}\)
\(=\dfrac{4\left(x^2-4\right)\left(7x-2\right)}{3\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)\left(x+2\right)\left(7x-2\right)}{3\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)\left(7x-2\right)}{3}\)
c) \(\dfrac{3x^3+3}{x-1}:x^2-x+1\)
\(=\dfrac{3x^3+3}{x-1}.\dfrac{1}{x^2-x+1}\)
\(=\dfrac{3\left(x^3+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{3\left(x+1\right)\left(x^2-x+1\right)}{\left(x-1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{3\left(x+1\right)}{x-1}\)
d) \(\dfrac{4x+6y}{x-1}:\dfrac{4x^2+12xy+9y^2}{1-x^3}\)
\(=\dfrac{4x+6y}{x-1}.\dfrac{1-x^3}{4x^2+12xy+9y^2}\)
\(=\dfrac{2\left(2x+3y\right)\left(1-x\right)\left(1+x+x^2\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)
\(=-\dfrac{2\left(2x+3y\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(2x+3y\right)^2}\)
\(=-\dfrac{2\left(x^2+x+1\right)}{2x+3y}\)
a, \(x^2+y^2-2x+10y+26=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+10y+25\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-5\end{cases}}\)
b,\(4x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+1=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)
c,\(5x^2+9y^2-12xy+4x+4=0\)
\(\Rightarrow\left(x^2+4x+4\right)+\left(4x^2-12xy+9y^2\right)=0\)
\(\Rightarrow\left(x+2\right)^2+\left(2x-3y\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\2x-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\2.\left(-2\right)-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-\frac{4}{3}\end{cases}}\)
d,\(5x^2+9y^2-6xy-4x+1=0\)
\(\Rightarrow\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^x\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(x-3y\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}2x+1=0\\x-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\-\frac{1}{2}-3y=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{1}{6}\end{cases}}\)
x^2 + 2xy + y^2 + 7x + 7y + 10=0
=(x+y)^2+7(x+y)+10=0
=((x+y)+3,5)^2-2,25>=-2,25
Vậy gtnn là -2,25