Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x = 2a; y = -5b.
Áp dụng đẳng thức Bunhiacopski ta có:
\(\left(3x+y\right)^2\le\left(x^2+y^2\right)\left(9+1\right)\Rightarrow x^2+y^2\ge\frac{1}{10}\)
Hay: \(4a^2+25b^2\ge\frac{1}{10}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{3}{x}=\frac{1}{y}\Leftrightarrow3y=x\Leftrightarrow-15b=2a\Leftrightarrow6a=-45b\)
\(\Leftrightarrow b=-\frac{1}{50};a=\frac{3}{20}\)
Đặt \(\left(4a;5b;-6c\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x+y+z=-5\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=25\\\frac{xy+yz+zx}{xyz}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=25\\xy+yz+zx=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2+z^2=25\) hay \(16a^2+25b^2+36c^2=25\)
Bài 1:
a: \(A=x^2-30x+225-114=\left(x-15\right)^2-114>=-114\forall x\)
Dấu '=' xảy ra khi x=15
b: \(B=4a^2+4a+1+1=\left(2a+1\right)^2+1>=1\forall a\)
Dấu '=' xảy ra khi a=-1/2
Bài 2:
a: \(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x=2
a) Ta có : x2 - 20x + 101
= x2 - 20x + 100 + 1
= (x - 10)2 + 1
Mà (x - 10)2 lớn hơn hoặc bằng 0
Nên (x - 10)2 + 1 lớn hơn hoặc bằng 1
=> GTNN của biểu thức là 1 . khi x = 10
b) 4a2+4a+2
=(2a)2+2.2a+1+1
=(2a+1)2+1
Vì (2a+1)2 \(\ge\)0 với mọi x \(\in\)R
=>(2a+1)2+1\(\ge\)1 với mọi x \(\in\)R
dấu "=" xảy ra <=> 2a+1=0 <=> 2a=-1 <=> a= -1/2
6a - 5b = 1 | 60 - 50 = 10 vậy chỉ có a là 0 | b là 9
4a2 + 25b2 = 402 + 2592 = 1.600 + 67.081 = 68.681
vậy cho nên giá trị nhỏ nhất của 4a2 + 25b2 là
68.681