Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)
\(c^2=bd\Rightarrow\frac{c}{d}=\frac{b}{c}\left(2\right)\)
Từ (1);(2) dễ dàng suy ra:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a\cdot b\cdot c}{b\cdot c\cdot d}\)
\(=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
\(f\left(x\right)=2016x^4-32\left(25k+2\right)x^2+k^2-100\)
Đặt \(x^2=t\left(t\ge0\right)\)
\(f\left(t\right)=2016t^2-32\left(25.k+2\right)t+k^2-100\)
Vì f(t) là đa thức bậc 2 nên chỉ có tối đa là 2 nghiệm \(t_1;t_2\)
Ta có nhận xét: \(x^2=t\left(t\ge0\right)\)nên với mỗi t >0 sẽ nhận được 2 nghiệm x và t=0 nhận được nghiệm x=0
Như vậy thì để đa thức f(x) có 3 nghiệm phân biệt thì đa thức f(t) phải có một ngiệm bằng 0 và một nghiệm t lớn hơn không
Khi đó: a=\(-\sqrt{t}\),b=0, c=\(\sqrt{t}\)
0 là một nghiệm của đa thức f(t) <=> f(0)=0 <=> \(k^2-100=0\Leftrightarrow k=\pm10\)
+) Với k=10; f(t)= 2016t^2-8064t=2016.t.(t-4)
f(t) có nghiệm t=0 và t=4
=> f(x) có 3 nghiệm a=-2, b=0, c=2
=> a-c=-2-2=-4
+) Với k=-10; f(t)=2016.t^2+7936t=t(2016t+7836)
f(t) có nghiệm t=0 và t=-7836/2016 (loại vì t>0)