Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
a, Ta có : \(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{126}{7}=-18\)
\(x=-90;y=-54;z=-72\)
b, \(5x=2y;3y=5z\Rightarrow\frac{x}{2}=\frac{y}{5};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)
\(x=-194;y=-485;z=-291\)
Ta có: 5x=2y⇒2x=5y5x=2y⇒2x=5y(1)
3y=5z⇒5y=3z3y=5z⇒5y=3z (2)
Từ (1) và (2) ,đặt: 2x=5y=3z=k⇒⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x=2k=2288y=5k=5288z=3k=32882x=5y=3z=k⇒{x=2k=2288y=5k=5288z=3k=3288 (3)
Từ (1) và (2) theo tính chất tỉ dãy số bằng nhau ,ta có:
2x=5y=3z=2−5+3x−y+z=02882x=5y=3z=2−5+3x−y+z=0288(4)
Suy ra k = 288. Dựa và (3) ta có: ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩x=2k=2288y=5k=5288z=3k=3288{x=2k=2288y=5k=5288z=3k=3288
Vậy .....
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
Câu hỏi của Phú Hồ Kim - Toán lớp 7 - Học toán với OnlineMath
tham khảo nhé
1. Gọi độ dài 3 cạnh tam giác lần lượt là a,b,c.(có hay ko cx đc, vì trg hợp này đề bài cho sẵn r)(a,b,c \(\inℕ^∗\))
Do cạnh a ngắn hơn cạnh c 8cm nên c-a=8 (cm)
Độ dài 3 cạnh ta, giác tỉ lệ vs 3;4;5 nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Ap dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{8}{2}=4\)
\(\Rightarrow\hept{\begin{cases}a=4.3=12\\b=4.4=16\\c=4.5=20\end{cases}}\)
Vậy;....
2.
a, x:y:z = 5:3:4 => \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{121}{7}\)
\(\frac{x}{5}=-\frac{121}{7}\Rightarrow x=-\frac{605}{7}\)
\(\frac{y}{3}=\frac{-121}{7}\Rightarrow y=-\frac{363}{7}\)
\(\frac{z}{4}=-\frac{121}{7}\Rightarrow z=-\frac{484}{7}\)
Vậy ...
b, 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\) ; 3y = 5z => \(\frac{y}{5}=\frac{z}{3}\)
=> \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)
\(\frac{x}{2}=-97\Rightarrow x=-97.2=-194\)
\(\frac{y}{5}=-97\Rightarrow y=-97.5=-485\)
\(\frac{z}{3}=-97\Rightarrow z=-97.3=291\)
Vậy ...
\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\)
\(3x=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{3}=\frac{3x+2y-z}{6+10-3}=\frac{26}{13}=2\)
\(\Rightarrow x=4;y=10;z=6\)