K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

a)a-b=(a+5b)-6b

Do a-b chia hết cho 6 

6b cũng chia hết cho 6

=>a+5b phải chia hết cho 6(đpcm)

b)a-b=(a+17b)-18b

Do a-b chia hết cho 6 

18b cũng chia hết cho 6

=>a+17b phải chia hết cho 6(đpcm)

c)(a-b)-12b=a-13b

Do a-b chia hết cho 6 

12b cũng chia hết cho 6

=>a-13b phải chia hết cho 6(đpcm)

12 tháng 7 2017

a) \(\text{a-b=(a+5b)-6b}\)

Do \(a-b⋮6\)

\(6b⋮6\)

\(\Rightarrow a+5b⋮6\)(đpcm)

b)\(\text{a-b=(a+17b)-18b}\)

Do \(a-b⋮6\)

\(18b⋮6\)

\(\Rightarrow a+17b⋮6\)(đpcm)

c) \(\text{(a-b)-12b=a-13b}\)

Do \(a-b⋮6\)

\(12b⋮6\)

\(\Rightarrow a-13b⋮6\)(đpcm)

12 tháng 11 2019

Cho 16a + 17 b chia hết cho 11 

Mà ( 16a + 17b ) + ( 17a +16b ) = 33a + 33b = 11(3a + 3b ) chia hết cho 11

=> 17a + 16 b chia hết cho 11

23 tháng 5 2015

2- 

Ta có:

a+5b chia hết cho 7

=>10.(a+5b) chia hết cho 7

=>10a+50b chia hết cho 7

Nếu 10a+b chia hết cho 7 thì 10a+50b-(10a+b) bchia hết cho 7

=>49b chia hết cho 7 (đúng)

Vì vậy 10a+b chia hết cho 7

CM điều ngược lại đúng

Ta có:

10a+b chia hết cho 7

=>5.(10a+b) chia hết cho 7

=>50a+5b chia hết cho 7

Nếu a+5b chia hết cho 7 thì (50a+5b)-(a+5b) chia hết cho 7

=>49a chia hết cho 7 (đúng)

Vậy điều ngược lại đúng

 

23 tháng 5 2015

Vì a và 5a có tổng các chữ số như nhau 

=> a và 5a có cùng số dư khi chia cho 9 

=> 5a - a chia hết cho 9

=> 4a chia hết cho 9

Mà ƯCLN(4,9) = 1

=> a chia hết cho 9 (đpcm)

1 tháng 9 2021

,!,!a,a,a,a

12 tháng 11 2019

2. Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath

5 tháng 1 2016

51a:17

=> 51a-a+5b:17

=> 50a+5b:17

=> 5(10a+b):17

=> 10a+b:17

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60