Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo tại đây:
Câu hỏi của Park Jihoon - Toán lớp 7 - Học toán với OnlineMath
Cách làm là như vậy đó.Bạn tự nghiên cứu nha !
Luôn thấy rằng: \(a_k\ne a_m\)(nếu \(a_k=a_m\)thì \(a_1=0\)\(\Rightarrow\)vô lí)
\(a_k\ne a_1,a_m\ne a_1\Rightarrow a_k;a_m;a_1\)là ba số khác nhau trong 51 số tự nhiên đã cho.
Ta có: \(a_k=a_m-a_1\Rightarrow a_1+a_k=a_m\)
Vậy trong 51 số đó tồn tại 3 số mà một số bằng tổng 2 số còn lại (đpcm)
Kurokawa Neko bạn giải thích rõ ak với am là sao dùm mình nha . Cảm ơn bạn nhiều
gọi \(a_1,a_2...a_{1001}\) là 1001 số nguyên dương đã cho xếp từ bé đến lớn
nghĩa là \(a_{1001}\) là số nguyên dương lớn nhất.
giả sử không thể chọn ra 3 số mà tổng hai số bất kỳ luôn khác số còn lại
khi đó ta có :
\(a_1,a_2,...a_{1001},a_{1001}-a_1;a_{1001}-a_2;....;a_{1001}-a_{1000}\) là 2001 số nguyên dương phân biệt nhỏ hơn 2000
điều này là vô lý vì chỉ có 2000 số nguyên dương bé hơn 2000
vậy giả sử là sai và ta có điều phải chứng minh
trong trường hợp từ 1->51 hay là những số liên tiếp thì nó sẽ nguyên cùng nhau. Trường hợp 2 thì nó sẽ không thể là các số liên tiếp thì đồng nghĩa với việc là nó sẽ là 50 số chẵn hoặc lẻ nhưng vì phải chọn 51 số nên số còn lại chắc chắn là số còn lại ( chẵn hoặc lẻ ) => đpcm