K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(39x-39y=39\left(x-y\right)\)

b) \(3x^2\left(x-3y\right)-5y\left(3y-x\right)=3x^2\left(x-3y\right)+5y\left(x-3y\right)\)

\(=\left(3x^2+5x\right)\left(x-3y\right)=x\left(3x+5\right)\left(x-3y\right)\)

c) \(16x^2+24xy+9y^2=\left(4x\right)^2+4x.3y.2+\left(3y\right)^2=\left(4x+3y\right)^2\)

d) \(25x^2-\frac{1}{25y^2}=\left(5x\right)^2-\left(\frac{1}{5y}\right)^2=\left(5x-\frac{1}{5y}\right)\left(5x+\frac{1}{5y}\right)\)

e) \(7x^2-7xy+5x-5y=7x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(7x+5\right)\)

f) \(5x^2-45y^2-30y-5=5\left(x^2-9y^2-6y-1\right)=5\left[x^2-\left(9y^2+6y+1\right)\right]\)

\(=5\left[x^2-\left(3y+1\right)^2\right]=5\left(x-3y-1\right)\left(x+3y+1\right)\)

g) \(x^2+2x+1-y^2-4y-1=\left(x^2+2x+1\right)-\left(y^2+2y+1\right)\) ( Chắc đề vậy :v ) 

\(=\left(x+1\right)^2-\left(y+1\right)^2=\left(x+1-y-1\right)\left(x+1+y+1\right)=\left(x-y\right)\left(x+y+2\right)\)

h) \(4x^2+8x-5=4x^2-2x+10x-5=2x\left(2x-1\right)+5\left(2x-1\right)\)

\(=\left(2x-1\right)\left(2x+5\right)\)

9 tháng 10 2017

Phép nhân và phép chia các đa thức

Câu a mình chắc chắn là đúng vì mình làm rồi.vui

Chúc bạn học tốt.

9 tháng 10 2017

b) \(-4x^2-4x-2\) <0 với mọi x

\(=-\left(4x^2+4x+2\right)\)

\(=-\left[\left(2x^2\right)+2.2x.1+1^2+2\right]\)

\(=-\left[\left(2x+1\right)^2+2\right]\)

\(=-\left(2x+1\right)^2-2\)

Nx : \(-\left(2x+1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(2x+1\right)^2-2< 0\) với mọi x

\(\Rightarrow-4x^2-4x-2< 0\) với mọi x

31 tháng 7 2021

\(4x^2-25y^2\)

\(\left(2x\right)^2-\left(5y\right)^2\)

\(\left(2x-5y\right)\left(2x+5y\right)\)

chọn c

2 tháng 10 2017

x2+x+1=x2+2.x.\(\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=(x+\(\frac{1}{2}\))2\(+\frac{3}{4}\)lớn hơn 0 vớimọi x

2 tháng 10 2017

a) x2 + x + 1

= (x2 + x) + 1

=x(x+1) +1

=(x + 1)(x+1)

=(x+1)>0

23 tháng 8 2020

Bài làm:

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

\(=-\left(2x+1\right)^2-1\le-1< 0\left(\forall x\right)\)

=> đpcm

b) \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2-8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y-1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

23 tháng 8 2020

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

                                           \(=-\left(2x+1\right)^2-1\)

    Vì \(-\left(2x+1\right)^2\le0\forall x\)\(\Rightarrow\)\(-\left(2x+1\right)^2-1\le-1\forall x\)

              \(\Rightarrow\)\(-\left(2x+1\right)^2-1< 0\forall x\)

              \(\Rightarrow\)\(-4x^2-4x-2< 0\forall x\)( ĐPCM )

b) Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)

        \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

        \(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)

    Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\)\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\forall x,y,z\)( ĐPCM )