Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(2VT=\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ac=2\left(ab+bc+ac\right)=2VP\)
\(VT\ge VP\)
2) \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)
Bài 1:
a) Có: 4a = 3b => \(\dfrac{a}{3}=\dfrac{b}{4}\) => \(\dfrac{a}{15}=\dfrac{b}{20}\)
7b = 5c => \(\dfrac{b}{5}=\dfrac{c}{7}\) => \(\dfrac{b}{20}=\dfrac{c}{28}\)
=> \(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}=\dfrac{2a+3b-c}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\left\{{}\begin{matrix}a=45\\b=60\\c=84\end{matrix}\right.\)
b) Tương tự câu a
c) Đặt \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=k\)
=> \(\left\{{}\begin{matrix}a=2k+1\\b=3k+2\\c=4k+3\end{matrix}\right.\)
Mà a - 2b + 3c = 14 => 2k + 1 - 6k - 4 + 12k + 9 = 8k + 6 = 14 => k = 1
=> \(\left\{{}\begin{matrix}a=3\\b=5\\c=7\end{matrix}\right.\)
d) Từ a:b:c = 3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)
=> \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)
Mà 2a2 + 2b2 - 3c2 = -100 => 18k2 + 32k2 - 75k2 = -100 => k2 = 4 => k = \(\pm\)2
Với k = 2 => \(\left\{{}\begin{matrix}a=6\\b=8\\c=10\end{matrix}\right.\)
Với k = -2 => \(\left\{{}\begin{matrix}a=-6\\b=-8\\c=-10\end{matrix}\right.\)
Bài 2:
Nửa chu vi hình chữ nhật là: 90:2 = 45 (m)
Tỉ số giữa chiều dài và chiều rộng = \(\dfrac{2}{3}\)=> chiều rộng = \(\dfrac{2}{5}\) nửa chu vi
=> chiều rộng = 18(m) => chiều dài = 27(m)
Áp dụng BĐT AM-GM ta có:
\(a+b\ge2\sqrt{ab}\ge4\Rightarrow4ab\ge16\Rightarrow ab\ge4\left(1\right)\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=16\)
\(\Rightarrow2\left(a^2+b^2\right)\ge16\Rightarrow a^2+b^2\ge8\left(2\right)\)
\(\left(1\right)+\left(2\right)=P\ge8+\dfrac{33}{4}=16\dfrac{1}{4}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=4\end{matrix}\right.\)\(\Rightarrow a=b=2\)
Vậy \(A_{Min}=16\dfrac{1}{4}\) khi \(a=b=2\)
Ta có: 3a2 + b2 = 4ab
<=> 3a2 + b2 - 4ab = 0
<=> a2 + b2 - 2ab + 2a2 - 2ab = 0
<=> (a - b)(3a - b) = 0 <=> a = b/3 (a - b = 0 loại vì a = b)
=> B = \(\dfrac{a-b}{a+b}\)= \(\dfrac{\dfrac{1}{3}b-b}{\dfrac{1}{3}b+b}\)= \(-\dfrac{2}{3}b:\dfrac{4}{3}b\) = \(-\dfrac{1}{2}\).
\(2a^2+2b^2=5ab\)
<=> \(2a^2+2b^2-5ab=0\)
<=> \(2a^2-4ab-ab+2b^2=0\)
<=> \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)
<=> \(\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)
Do b > a > 0
=> b = 2a
\(A=\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)
\(2a^2+2b^2=5ab\)
<=> \(2a^2+2b^2-5ab=0\)
<=> \(2a^2-4ab-ab+2b^2=0\)
<=> \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)
<=> \(\left(2a-b\right)\left(a-2b\right)=0\)
<=> \(\orbr{\begin{cases}2a-b=0\left(L\right)\\a-2b=0\end{cases}}\)
=> \(a=2b\)
=> \(A=\frac{a+2b}{2a-b}=\frac{2b+2b}{2.2b-b}=\frac{4b}{3b}=\frac{4}{3}\)
M = 2(a-2ab+b) / 2(a+2ab+b) =ab/9ab = 1/9
lưu ý: a;b binh phuong nhé tui làm bieng viêt
Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài làm tại link này nhé!
Giải
Ta có : \(2a^2+2b^2=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)
\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)
Vì \(b>a>0\) nên loại trường hợp a = 2b
\(\Leftrightarrow2a=b\)
\(\Leftrightarrow\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)
Vậy \(A=-3\)