Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn vào link này này: https://olm.vn/hoi-dap/question/94063.html(đừng có k sai cho tui nếu lm sai cứ nói vs tui yk tôi ghét bị kick sai lắm '' cảnh báo trước'' ko thì đừng trách nhá
Lời giải:
Có 4 số a,b,c,d và 3 số dư có thể xảy ra khi chia một số cho 3 là 0,1,2
Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất \(\left[\frac{4}{3}\right]\)+1=2 số có cùng số dư khi chia cho 3
Không mất tổng quát giả sử đó là a,b⇒a−b⋮3
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3
Mặt khác:
Trong 4 số a,b,c,d
Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b
⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3
⇒c−a⋮2;d−b⋮2
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12
Ta có đpcm,
Lời giải:
Có 4 số a,b,c,d và 3 số dư có thể xảy ra khi chia một số cho 3 là 0,1,2
Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [\(\frac{4}{3}\)]+1=2số có cùng số dư khi chia cho 3
Không mất tổng quát giả sử đó là a,b⇒a−b⋮3
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3
Mặt khác
Trong 4 số a,b,c,da,b,c,d
Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b
⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)\(⋮\)4
Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3
⇒c−a⋮2; d−b⋮2
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó nó cũng chia hết cho 12
Ta có đpcm,
đặt A=(b-a)(c-a)(c-b)(d-b)(c-d)
Trong 4 số a,b,c,d luôn có 2 số chia cho 3 có cùng số dư,do đó hiệu của chúng chia hết cho 3 hay A chia hết cho 3 (1)
Mặt khác: Trong a,b,c,d hoặc phải có 2 số chẵn,2 số lẻ
Chẳng hạn: a,b chẵn;c,d lẻ <=>b-a và d-c chia hết cho 2 <=>(b-a)(d-c) chia hết cho 2.2=4
=>A chia hết cho 4
Hoặc nếu không như vậy thì trong 4 số a,b,c,d sẽ tồn tại 2 số chia cho 4 có cùng số dư nên hiệu của chúng chia hết cho 4 =>A chia hết cho 4 (2)
Từ (1) và (2),kết hợp với (3;4)=1
=>A chia hết cho 3.4=12
=>đpcm
13a + 3 = k² <=> 13a + 3 - 81 = k² - 81 <=> 13a - 78 = k²-9²
<=> 13(a-6) = (k-9)(k+9) (*)
do 13 là số nguyên tố nên từ (*) ta phải có k-9 hoặc k+9 chia hết cho 13
=> k = 13n+9 hoặc k = 13n+4
có a = (k²-3)/13 ; từ trên thấy k không nhận giá trị 0, -1, +1 nên k²-3 > 0
Tóm lại các số tự nhiên a có dạng:
a = [(13n+9)² - 3]/13 hoặc a = [(13n+4)² - 3]/13 với n tùy ý thuộc Z
đpcm<=>(\(\frac{a}{b+c+d}\)-\(\frac{1}{3}\))+(\(\frac{b}{a+c+d}\)-\(\frac{1}{3}\))+(\(\frac{c}{a+b+d}\)-\(\frac{1}{3}\))+(\(\frac{d}{a+b+c}\)-\(\frac{1}{3}\))\(\ge\)0
Xét giá trị của các dấu ngoặc,dễ thấy chúng đều lớn hơn hoặc bằng 0
Vậy thì bất đẳng thức trên là đúng hay đpcm là đúng