K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

Ta chỉ cần cộng thêm 1 vào mỗi tỉ số,

\(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Vì a + b + c + d \(\ne\)0 nên a = b = c = d

\(\Rightarrow k=\frac{3a}{a}=3\)

18 tháng 12 2015

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)

\(=\frac{3a+3b+3c+3d}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=k\)

Th1: 3(a + b + c + d) = 0 Mà a + b  + c + d khác 0 => Loại

Vậy k = 3 

4 tháng 8 2017

cộng thêm 1 vào mỗi tỉ số , ta được :

\(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

vì a + b + c + d \(\ne\)0 nên a = b = c = d 

Suy ra : k = \(\frac{3a}{a}=3\)

13 tháng 12 2016

Giúp mình với mai mình phải nạp bài rồi

 

18 tháng 12 2016

\(\frac{b+c+d}{a}\)\(\frac{c+d+a}{b}\)\(\frac{d+a+b}{c}\)\(\frac{a+b+c}{d}\)

\(\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)

\(\frac{3a+3b+3c+3d}{a+b+c+d}\)

\(\frac{3\left(a+b+c+d\right)}{a+b+c+d}\)= 3

vậy k = 3

14 tháng 1 2017

b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=k

áp dụng tc dãy tỉ số bằng nhau ta được:

b+c+d+c+d+a+d+a+b+a+b+c/a+b+c+d=k

=>3a+3b+3c+3d/a+b+c+d=k

=>3+k

=>k=3

Vậy k=3

5 tháng 8 2016

Cộng thêm 1 vào mỗi tỉ số đã cho ta được:

\(\frac{b+c+d}{a}\) +1 = \(\frac{c+d+a}{b}\) +1 = \(\frac{d+a+b}{c}\) +1= \(\frac{a+b+c}{d}\) +1

\(\frac{a+b+c+d}{a}\) = \(\frac{a+b+c+d}{b}\) = \(\frac{a+b+c+d}{c}\) = \(\frac{a+b+c+d}{d}\) 

Vì a+b+c+d khác 0 nên a=b=c=d

Suy ra k= \(\frac{3a}{a}\) = 3

20 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=\dfrac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}=\dfrac{\left(a+a+a\right)+\left(b+b+b\right)+\left(c+c+c\right)+\left(d+d+d\right)}{a+b+c+d}=\dfrac{3a+3b+3c+3d}{a+b+c+d}=\dfrac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

Vậy \(k=3\)