K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [M, A] Đoạn thẳng g: Đoạn thẳng [D, M] Đoạn thẳng h: Đoạn thẳng [B, M] Đoạn thẳng i: Đoạn thẳng [C, M] Đoạn thẳng j: Đoạn thẳng [E, G] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [H, E] Đoạn thẳng m: Đoạn thẳng [A, D] Đoạn thẳng n: Đoạn thẳng [G, F] Đoạn thẳng p: Đoạn thẳng [H, F] Đoạn thẳng q: Đoạn thẳng [D, B] Đoạn thẳng r: Đoạn thẳng [C, B] O = (5.56, -3.6) O = (5.56, -3.6) O = (5.56, -3.6) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c M = (4.29, -4.84) M = (4.29, -4.84) M = (4.29, -4.84) Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm F: Trung điểm của h Điểm F: Trung điểm của h Điểm F: Trung điểm của h Điểm G: Trung điểm của i Điểm G: Trung điểm của i Điểm G: Trung điểm của i Điểm H: Trung điểm của g Điểm H: Trung điểm của g Điểm H: Trung điểm của g

Cô hướng dẫn nhé.

Gọi E, F, G, H lần lượt là trung điểm của MA, MB, MC và MD.

Theo tính chất đường trung bình, ta có HE // AD; EG // AC nên

 \(\widehat{HEG}=\widehat{HEM}+\widehat{MEG}=\widehat{DAM}+\widehat{MAC}=\widehat{DAC}\) (Các góc đồng vị bằng nhau)

Tương tự \(\widehat{HFG}=\widehat{HFM}+\widehat{MFG}=\widehat{DBM}+\widehat{MBC}=\widehat{DBC}\)

Mà \(\widehat{DAC}=\widehat{DBC}\) (Hai góc nội tiếp cùng chắn cung DC)

Vậy \(\widehat{HEG}=\widehat{HFG}\) hay EFGH là tứ giác nội tiếp. Vậy 4 điểm E, F, G, H cùng thuộc một đường tròn.

Trường hợp hình dưới đây, ta làm tương tự, nhưng xét hiệu hai góc.

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [M, A] Đoạn thẳng g: Đoạn thẳng [D, M] Đoạn thẳng h: Đoạn thẳng [B, M] Đoạn thẳng i: Đoạn thẳng [C, M] Đoạn thẳng j: Đoạn thẳng [E, G] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [H, E] Đoạn thẳng m: Đoạn thẳng [A, D] Đoạn thẳng n: Đoạn thẳng [G, F] Đoạn thẳng p: Đoạn thẳng [H, F] Đoạn thẳng q: Đoạn thẳng [D, B] Đoạn thẳng r: Đoạn thẳng [C, B] O = (5.56, -3.6) O = (5.56, -3.6) O = (5.56, -3.6) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c M = (1.68, -3.19) M = (1.68, -3.19) M = (1.68, -3.19) Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm F: Trung điểm của h Điểm F: Trung điểm của h Điểm F: Trung điểm của h Điểm G: Trung điểm của i Điểm G: Trung điểm của i Điểm G: Trung điểm của i Điểm H: Trung điểm của g Điểm H: Trung điểm của g Điểm H: Trung điểm của g

Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD=...
Đọc tiếp

Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD= MA² = MO² –R² . c. Chứng minh: Các tiếp tuyến tại C,D của đường tròn (O;R) cắt nhau tại một điểm nằm trên đường thắng AB. d. Chứng minh: Đường thắng AB luôn đi qua một điểm cố định. e, Chứng minh: Một đường thắng đi qua O vuông góc với MO cắt các tia MA, MB lần lượt tại PQ. Tìm GTNN của SMPO. Tìm vị trí điểm M để AB nhỏ nhất.

 

0
12 tháng 6 2018

A B C O M D E H K I P

a) Xét tứ giác ABOC: ^ABO=^ACO=900 (Do AB và AC là 2 tiếp tuyến của (O))

=> Tứ giác ABOC nội tiếp đường tròn dường kính AO (1)

Ta có: DE là dây cung của (O), I là trung điểm DE => OI vuông góc DE => ^OIA=900

Xét tứ giác ABOI: ^ABO=^OIA=900 => Tứ giác ABOI nội tiếp đường tròn đường kính AO (2)

(1) + (2) => Ngũ giác ABOIC nội tiếp đường tròn

Hay 4 điểm B;O;I;C cùng thuộc 1 đường tròn (đpcm).

b) Gọi P là chân đường vuông góc từ D kẻ đến OB

Ta có: Tứ giác BOIC nội tiếp đường tròn => ^ICB=^IOP (Góc ngoài tại đỉnh đối) (3)

Dễ thấy tứ giác DIPO nội tiếp đường tròn đường kính OD

=> ^IOP=^IDP (=^IDK) (4)

(3) + (4) => ^ICB=^IDK (đpcm).

c) ^ICB=^IDK (cmt) => ^ICH=^IDH => Tứ giác DHIC nội tiếp đường tròn

=> ^DIH=^DCH hay ^DIH=^DCB.

Lại có: ^DCB=^DEB (2 góc nội tiếp cùng chắn cung BD) => ^DIH=^DEB

Mà 2 góc trên đồng vị => IH // EB hay IH // EK

Xét tam giác KDE: I là trung điểm DE (Dễ c/m); IH // EK; H thuộc DK

=> H là trung điểm DK (đpcm).

27 tháng 5 2018

giúp câu c

29 tháng 5 2018

giúp mk vs ạ mk đang cần gấp

13 tháng 4 2019

IK² = IO² - R² 
IH² = (MH/2)²= (MA²/2MO)² = (MO² - R²)²/(2MO)² 
∆MIK cân <=> IM = IK <=> IH = IK 
<=> (MO² - R²)² = 4MO²(IO² - R²) 
<=> (MO² + R²)² = (2.MO.IO)² 
<=> MO² + R² = 2MO.IO 
<=> R² = MO(2IO - MO) = MO.HO đúng

10 tháng 4 2022

a) tứ giác AOBM nội tiếp thì có tâm đường tròn là trung điểm OM

cần CM tứ giác OIMB nội tiếp: dùng tổng hai góc đối cộng với nhau bằng 180o, mà đã có OBM=90o, mà I là trung điểm dây cung CD nên OI vuông góc CD luôn => OIM=90o

Vậy tứ giác OIMB nội tiếp thì tâm đường tròn cũng tại trung điểm OM luôn

b) 5 điểm A,I,O,B,M cùng thuộc 1 đtron

=> tứ giác AIOB nội tiếp => góc AIB=AOB (cùng chắn cung)

tứ giác AIOM nội tiếp => góc AIM=AOM (ccc)

mà góc AOM=1/2AOB=AIM=1/2AIB

=> BIM=1/2AIB (đpcm