Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(A+B\right)^2=\left(A+B\right)\left(A+B\right)=A\left(A+B\right)+B\left(A+B\right)\)
\(=A^2+AB+AB+B^2=A^2+2AB+B^2\)
2) \(\left(A-B\right)^2=\left(A-B\right)\left(A-B\right)=A\left(A-B\right)-B\left(A-B\right)\)
\(=A^2-AB-AB+B^2=A^2-2AB+B^2\)
3) \(A^2-B^2=A^2-AB-B^2+AB\)
\(=A\left(A-B\right)+B\left(A-B\right)=\left(A-B\right)\left(A+B\right)\)
p/s: mấy cái kia tương tự
Ta có: \(\frac{3a^2+b^2}{a^2+b^2}\)=\(\frac{3}{4}\)
\(\Rightarrow\) (3a2+b2).4=(a2+b2).3
\(\Rightarrow\) 12a2+4b2= 3a2+3b2
\(\Rightarrow\) 12a2-3a2 = -4b2+3b2
\(\Rightarrow\) 9a2= -1b2
\(\Rightarrow\)\(\frac{a^2}{b^2}\)=\(\frac{-1}{9}\)
\(\Rightarrow\)\(\frac{a}{b}\)=\(\frac{-1}{3}\)
Ta có: \(\dfrac{3a^2+b^2}{a^2+b^2}=\dfrac{3}{4}\)
\(\Rightarrow\left(3a^2+b^2\right)\cdot4=\left(a^2+b^2\right)\cdot3\)
\(\Rightarrow12a^2+4b^2=3a^2+3b^2\)
\(\Rightarrow12a^2-3a^2=-3b^2+4b^2\)
\(\Rightarrow9a^2=-1b^2\)
\(\Rightarrow\dfrac{a^2}{b^2}=-\dfrac{1}{9}\)
Vì lũy thừa mũ chẵn là số nguyên dương mà \(-\dfrac{1}{9}\) là số nguyên âm nên \(\dfrac{a}{b}\) không có giá trị
#)Giải :
c) ( a + b )3 = (a+b)(a+b)(a+b)
= a(a+b)(a+b) +b(a+b)(a+b)
= (a2+ab)(a+b)+(ab+b2)(a+b)
= (a3+a2b+a2b+ab2)+(a2b+ab2+ab2+b2)
= a3+a2b+a2b+ab2+a2b+ab2+ab2+b2
= a3+a2b+a2b+a2b+ab2+ab2+ab2+b2
= a3+3a2b+3ab2+b2
Vậy : (a+b)3= a3+ 3a2b + 3ab2 + b2 ( dpcm )
#~Will~be~Pens~#
a) \(\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)\)
\(=a\left(a+b\right)+b\left(a+b\right)\)
\(=a^2+ab+ab+b^2\)
\(=a^2+2ab+b^2\)
Vậy \(\left(a+b\right)^2=a^2+2ab+b^2\)
Ta có: \(\dfrac{3a^2-b^2}{a^2+b^2}=\dfrac{3}{4}\)
\(\Leftrightarrow4\cdot\left(3a^2-b^2\right)=3\left(a^2+b^2\right)\)
\(\Leftrightarrow12a^2-4b^2=3a^2+3b^2\)
\(\Leftrightarrow12a^2-3a^2=3b^2+4b^2\)
\(\Leftrightarrow9a^2=7b^2\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{7}{9}\)
hay \(\dfrac{a}{b}=\pm\dfrac{\sqrt{7}}{3}\)