K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

9a2 + 4b2 = 13ab => (3a)2 + 2.3a.2b + (2b)= 25ab => (3a+2b)2 = 25ab => 3a + 2b  = 5\(\sqrt{ab}\) (do 3a ; 2b > 0)

9a2 + 4b2 = 13ab => (3a)2 - 2.3a.2b + (2b)= ab => (3a- 2b)2 = ab => 3a - 2b  = \(\sqrt{ab}\)  (ví 3a > 2b > 0)

A = \(\frac{ab}{\left(3a-2b\right)\left(3a+2b\right)}=\frac{ab}{\sqrt{ab}.5\sqrt{ab}}=\frac{1}{5}\)

22 tháng 4 2019

\(A=\frac{2ab}{4ab}+\frac{2ab}{a^2+4b^2}+\frac{1}{8ab}-\frac{1}{2}\)

áp dụng bđt AM-GM , a,b> 0

\(\Rightarrow A\ge2ab\left(\frac{4}{4ab+a^2+4b^2}\right)+\frac{1}{8ab}-\frac{1}{2}\)

\(\Rightarrow A\ge\frac{8ab}{1}+\frac{1}{8ab}-\frac{1}{2}\)

\(\Rightarrow A\ge2-\frac{1}{2}=\frac{3}{2}\)

13 tháng 7 2020

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

13 tháng 7 2020

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

15 tháng 1 2018

Ta có: \(\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}\ge\frac{1}{25}\Leftrightarrow\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}-\frac{1}{25}\ge0\)

\(\Leftrightarrow\frac{25a^2+25b^2-12a^2-25ab-12b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

\(\Leftrightarrow\frac{13a^2-25ab+13b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

\(\Leftrightarrow\frac{13\left(a^2-2.\frac{25}{26}ab+\frac{625}{676}b^2\right)+\frac{51}{52}b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

\(\Leftrightarrow\frac{13\left(a-\frac{25}{26}b\right)^2+\frac{51}{52}b^2}{25\left(4a+3b\right)\left(3a+4b\right)}\ge0\)

Do a, b > 0 nên cả tử và mẫu của phân thức bên vế trái đều lớn hơn 0.

Vậy bất đẳng thức cuối là đúng hay \(\frac{a^2+b^2}{\left(4a+3b\right)\left(3a+4b\right)}\ge\frac{1}{25}\forall a,b>0;a\ne-\frac{3b}{4};b\ne-\frac{4b}{3}\)

17 tháng 11 2016

Từ \(6a^2+ab=35b^2\)\(\Rightarrow6a^2+ab-35b^2=0\)

\(\Rightarrow6a^2+15ab-14ab-35b^2=0\)

\(\Rightarrow3a\left(2a+5b\right)-7b\left(2a+5b\right)=0\)

\(\Rightarrow\left(3a-7b\right)\left(2a+5b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3a=7b\\2a=-5b\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a=\frac{7b}{3}\\a=-\frac{5b}{2}\end{cases}}\)

Thay vao tinh....

15 tháng 11 2016

Ta có : \(6a^2+ab=25b^2\) 

Vì a,b > 0 nên chia cả hai vế cho a2 được : \(6+\frac{b}{a}=\frac{25b^2}{a^2}\)

Đặt \(t=\frac{b}{a}\) thì ta có \(25t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=\frac{1+\sqrt{601}}{50}\\t=\frac{1-\sqrt{601}}{50}\end{cases}}\)

Tới đây bạn suy ra tỉ số giữa a và b rồi thay vào tính M nhé!

17 tháng 11 2016

Thế vào ta được

\(M=\frac{3.\frac{7^2}{3^2}b^2+5b^2+\frac{7}{3}b^2}{2.\frac{7^2}{3^2}b^2+4b^2-3.\frac{7}{3}b^2}\)

\(=\frac{\frac{49+15+7}{3}}{\frac{98+36-63}{9}}=\frac{\frac{71}{3}}{\frac{71}{9}}=3\)

17 tháng 11 2016

Ta có: \(6a^2+ab=35b^2\)

\(\Leftrightarrow\left(6a^2-14ab\right)+\left(15ab-35b^2\right)=0\)

\(\Leftrightarrow\left(3a-7b\right)\left(2a+5b\right)=0\)

\(\Rightarrow3a=7b\Rightarrow a=\frac{7b}{3}\)

\(\Rightarrow M=3\)