Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a_1=1,a_2=1+\frac{1}{2},a_3=1+\frac{1}{2}+\frac{1}{3},...,a_n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\)
\(\Rightarrow a_1< a_2< ...< a_n\left(\text{vì }n\inℕ,n>1\right)\)
\(\Rightarrow\frac{1}{\left(a_1\right)^2}+\frac{1}{\left(2.a_2\right)^2}+....+\frac{1}{\left(n.a_n\right)^2}< \frac{1}{\left(a_1\right)^2}+\frac{1}{\left(2.a_1\right)^2}+....+\frac{1}{\left(n.a_1\right)^2}\)
\(=\frac{1}{1}+\frac{1}{2^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+...+\frac{1}{\left(n-1\right)n}=2-\frac{1}{n}< 2\left(\text{vì }n\inℕ,n>1\right)\)
Vậy...
p/s: lần sau bạn viết đề rõ ra :((
Giải:
Đặt \(c_1=a_1-b_1;c_2=a_2-b_2;...;c_{2015}=a_{2015}-b_{2015}\)
Xét tổng \(c_1+c_2+c_3+...+c_{2015}\) ta có:
\(c_1+c_2+c_3+...+c_{2015}\)
\(=\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_{2015}-b_{2015}\right)\)
\(=0\)
\(\Rightarrow c_1;c_2;c_3;...;c_{2015}\) phải có một số chẵn
\(\Rightarrow c_1.c_2.c_3...c_{2015}⋮2\)
Vậy \(\left(a_1-b_1\right)\left(a_2-b_2\right)...\left(a_{2015}-b_{2015}\right)⋮2\) (Đpcm)
xét n tích a1a2+a2a3+...+ana1, mỗi tích có giá trị bằng 1 hoặc -1 mà tổng của chúng =0 nên số tích có giá trị 1 bằng số tích có giá trị -1 và đều = n/2 => n chia hết cho 2
bây giờ ta chứng minh rằng số tích có giá trị bằng -1 cũng là số chẵn
thật vậy xét
A=(a1.a2)(a2.a3)...(an-1.an) (an.a-1)
ta thấy A =a1^2.a2^2....an^2 nên A>0 , chứng tỏ số tích có giá trị -1 cũng là số chẵn tức là n/2 là số chẵn , do đó n chia hết cho 4
tick nha