K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

sửa lại đề bài nhé 

tìm x ,biết 

\(x=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)

+ nếu a+b+c=0

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{c}{a+b}\\\dfrac{a}{b+c}\\\dfrac{b}{c+a}\end{matrix}\right.\Rightarrow x=-1\)

nếu a+b+c \(\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(x=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

nếu nếu a+b+c \(\ne0\)

thì x=\(\dfrac{1}{2}\)

nếu nếu a+b+c =0

thì x= -1

x là giá trị của mỗi tỉ số nhé

\(\ne0\)\(\ne0\)

 

12 tháng 12 2017

Ta có : \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)

*Nếu \(a+b+c\ne0\) \(\Rightarrow\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)*Nếu \(\) \(a+b+c=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-c\end{matrix}\right.\)\(\)

\(\Rightarrow\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a}{-a}=\dfrac{b}{-b}=\dfrac{c}{-c}=-1\)

Vậy \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{1}{2}\) hay\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=-1\)

12 tháng 12 2017

Theo tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{1}{2}\)

Vậy giá trị mỗi tỉ số trên là : \(\dfrac{1}{2}\)

5 tháng 5 2017

a+b+c=0\(\Rightarrow c=0-a-b\)

Thay vào tỉ số đầu tiên ta được

\(\dfrac{a}{b+c}=\dfrac{a}{b+0-a-b}=\dfrac{a}{-a}=-1\)

\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)

\(\Rightarrow\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=-1\)

Chúc bạn học tốtbanh

28 tháng 1 2018

Lời giải \(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Ta có: \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)

\(\Rightarrow\dfrac{a+b-c}{c}+2=\dfrac{b+c-a}{a}+2=\dfrac{c+a-b}{b}+2\)

\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Khi \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\Leftrightarrow B=\dfrac{-abc}{abc}=-1\)

Khi \(a=b=c\Leftrightarrow B=\dfrac{8abc}{abc}=8\)

24 tháng 9 2017

+) Nếu \(a,b,c\ne0\) thì theo tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

+) Nếu \(a+b+c=0\)

\(\Leftrightarrow b+c=-a;c+a=-b;a+b=-c\)

\(\Leftrightarrow\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a}{-a}=\dfrac{b}{-b}=\dfrac{c}{-c}=-1\)

9 tháng 11 2017

còn khác o

2 tháng 8 2017

Nếu \(a+b+c\) khác \(0\) thì theo tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)

Nếu \(a+b+c = 0\)

\(\Rightarrow\)\(b+c = -a\)

\(\Rightarrow\)\(c+a = -b\)

\(\Rightarrow\)\(a+b = -c \)

\(\Rightarrow\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=-1\)

2 tháng 3 2017

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+a+c+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

Do \(\dfrac{a}{b+c}=\dfrac{1}{2}\Rightarrow b+c=2a\) (1)

\(\dfrac{b}{a+c}=\dfrac{1}{2}\Rightarrow a+c=2b\) (2)

\(\dfrac{c}{a+b}=\dfrac{1}{2}\Rightarrow a+b=2c\) (3)

Thay (1); (2) và (3) vào \(P\) ta có:

\(P=\dfrac{2a}{a}+\dfrac{2b}{b}+\dfrac{2c}{c}\)

\(\Rightarrow P=2+2+2=6\)

Vậy \(P=6.\)

2 tháng 3 2017

+) Xét \(a+b+c=0\Rightarrow\left[\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)

Ta có: \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

+) Xét \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+b}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

Vậy P = -3 hoặc P = 6