Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất dãy tỉ số bằng nhau
Ta có : a phần 2 =b phần 3 =a2-b2+2c2 phần 4-9+4=108 phần 9 =12
suy ra a=12x2=24
suy ra b=12x3=36
suy ra c =12x4=48
Vậy a=24
b=36
c=48
Bài 2:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{2+4+3}=\dfrac{180}{9}=20\)
=>a=20; b=80; c=60
Bài 3:
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\left(\dfrac{b}{d}\right)^2\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2-b^2}{c^2-d^2}\)
c: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
a, Có: \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}=k\Rightarrow k^3=\frac{a}{c}.\frac{c}{b}.\frac{b}{d}=\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\left(ĐPCM\right)\)
b, Thấy: I y-3 I \(\ge\)0 => VT\(\le\)42 => VP \(\le\)42
=> \(4\left(2012-x\right)^4\le42\Leftrightarrow\left(2012-x\right)^4\le10.5\)
Mặt khác với \(\forall y\in Z,\)VT \(⋮\)3
=> VP \(⋮\)3 <=> VP=0 hay x=2012
khi đó: VT=42-3I y-3I =0 <=> Iy-3I=14 <=> \(\orbr{\begin{cases}y-3=-14\\y-3=14\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-11\\y=17\end{cases}}}\)
Vậy nghiệm thỏa mãn là: (x,y)=(2012,-11), (2012, 17)