Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức AM - GM, ta được: \(2yz+2=x^2+\left(y^2+2yz+z^2\right)=x^2+\left(y+z\right)^2\ge2\sqrt{x^2.\left(y+z\right)^2}=2x\left(y+z\right)\Rightarrow yz+1\ge x\left(y+z\right)\)\(\Rightarrow VT\le\frac{x^2}{x^2+x+x\left(y+z\right)}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}=\frac{x+y+z}{x+y+z+1}+\frac{1}{xyz+3}\)
- Nếu \(x+y+z\le2\)thì \(VT\le1-\frac{1}{x+y+z+1}+\frac{1}{xyz+3}\le1-\frac{1}{3}+\frac{1}{3}=1\)
- Nếu \(x+y+z\ge2\), ta đặt x + y + z = p; xy + yz + zx = q; xyz = r thì áp dụng bất đẳng thức Schur, ta được \(VT\le\frac{p}{p+1}+\frac{1}{\frac{p\left(4q-p^2\right)}{9}+3}=\frac{p}{p+1}+\frac{9}{p^3-4p+27}\)
Khảo sát hàm trên với \(p\in\left[\sqrt{2};2\right]\)ta cũng có \(VT\le1\)
Vậy ta có: \(\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}\le1\)
Đẳng thức xảy ra khi x = y = 1; z = 0
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
\(=\frac{y^2z^2}{x\left(y+z\right)}+\frac{z^2x^2}{y\left(z+x\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)
\(\ge\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)
Đặt \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\) \(\left(\text{*}\right)\)
Khi đó, ta cần chứng minh bất đẳng thức \(\left(\text{*}\right)\) luôn đúng với mọi \(x,y,z\in Z^+\) và \(x^2+y^2+z^2=2\) \(\left(\alpha\right)\)
\(VP\left(\text{*}\right)=\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}+3\)
Ta có các bất đẳng thức quen thuộc đối với ba số \(x,y,z\in Z^+\) như sau:
\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}\)
Áp dụng các bất đẳng thức trên cho \(VP\left(\text{*}\right)\) ta được:
\(VP\left(\text{*}\right)\ge\left(\frac{x^2}{y^2+z^2}+1\right)+\left(\frac{y^2}{x^2+z^2}+1\right)+\left(\frac{z^2}{x^2+y^2}+1\right)=\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}+\frac{2}{x^2+y^2}\) (theo \(\left(\alpha\right)\) )
Hay nói cách khác, \(VP\left(\text{*}\right)\ge VT\left(\text{*}\right)\)
Vậy, bđt \(\left(\text{*}\right)\) được chứng minh.
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z\\x^2+y^2+z^2=2\end{cases}\Leftrightarrow}\) \(x=y=z=\sqrt{\frac{2}{3}}\)
\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{x^2+z^2}\)
\(=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\)
Áp dụng BĐT cô-si cho các cặp số thực không âm sau: x2 và y2 ; y2 và z2 ; x2 và z2 ta được:
\(x^2+y^2\ge2xy\Rightarrow\frac{z^2}{x^2+y^2}\le\frac{z^2}{2xy}\left(1\right)\)
Tương tự ta được: \(\frac{x^2}{y^2+z^2}\le\frac{x^2}{2yz}\left(2\right);\frac{y^2}{x^2+z^2}\le\frac{y^2}{2xz} \left(3\right)\)
Từ (1) và (2) và (3) suy ra: \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}\le3+\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2xz}=3+\frac{x^3+y^3+z^3}{2xyz}\)
Đk: 0 < x;y;z < = 1
Ta có:
\(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}=\frac{3}{2}\)
<=> \(2x\sqrt{1-y^2}+2y\sqrt{1-z^2}+2z\sqrt{1-x^2}=3\)
<=> \(3-2x\sqrt{1-y^2}-2y\sqrt{1-z^2}-2z\sqrt{1-x^2}=0\)
<=> \(1-y^2-2x\sqrt{1-y^2}+x^2+1-z^2-2y\sqrt{1-z^2}+y^2+1-x^2-2z\sqrt{1-x^2}+z^2=0\)
<=> \(\left(\sqrt{1-y^2}-x\right)^2+\left(\sqrt{1-z^2}-y\right)^2+\left(\sqrt{1-x^2}-z\right)^2=0\)
<=> \(\hept{\begin{cases}\sqrt{1-y^2}-x=0\\\sqrt{1-z^2}-y=0\\\sqrt{1-x^2}-z=0\end{cases}}\) <=> \(\hept{\begin{cases}\sqrt{1-y^2}=x\\\sqrt{1-z^2}=y\\\sqrt{1-x^2}=z\end{cases}}\) <=> \(\hept{\begin{cases}1-y^2=x^2\left(1\right)\\1-z^2=y^2\left(2\right)\\1-x^2=z^2\left(3\right)\end{cases}}\)
Từ (1), (2) và (3) cộng vế theo vế:
\(3-\left(x^2+y^2+z^2\right)=x^2+y^2+z^2\) <=> \(2\left(x^2+y^2+z^2\right)=3\) <=> \(x^2+y^2+z^2=\frac{3}{2}\)
BDT CẦN CM TƯƠNG ĐƯƠNG VỚI
\(x+y+z-\frac{x}{1+y^2}-\frac{y}{1+z^2}-\frac{z}{1+x^2}\le3-\frac{3}{2}=\frac{3}{2}\)
\(\Leftrightarrow\left(x-\frac{x}{1+y^2}\right)+\left(y-\frac{y}{1+z^2}\right)+\left(z-\frac{z}{1+x^2}\right)\le\frac{3}{2}\)
\(\Leftrightarrow\frac{xy^2}{1+y^2}+\frac{yz^2}{1+z^2}+\frac{zx^2}{1+x^2}\le\frac{3}{2}\)(1)
mat khac \(1+y^2\ge2y;1+z^2\ge2z;1+x^2\ge2x\)nen
(2)\(\frac{xy^2}{1+y^2}+\frac{yz^2}{1+z^2}+\frac{zx^2}{1+x^2}\le\frac{xy^2}{2y}+\frac{yz^2}{2z}+\frac{zx^2}{2x}=\frac{1}{2}\left(xy+yz+zx\right)\)
ma \(\frac{\left(x+y+z\right)^2}{3}\ge xy+yz+zx\) (bn tu cm)
\(\Rightarrow vt\le\frac{1}{2}.\frac{\left(x+y+x\right)^2}{3}=\frac{3}{2}\)
dau =xay ra khi va chi khi x=y=z=1