K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Đặt x/2017=y/2018=z/2019=k => x=2017k,y=2018k,z=2019k

Ta có: 4(x-y)(y-z)=4(2017k-2018k)(2018k-2019k)=4(-k)(-k)=4k(1)

(z-x)2 = (2019k-2017k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) => đpcm

13 tháng 2 2020

Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên

18 tháng 12 2020

Ta có : x3 + y3 = z(3xy - z2)

=> x3 + y3 = 3xyz - z3

=> x3 + y3 + z3 - 3xyz = 0

=> (x + y)(x2 - xy + y2) + z3 - 3xyz = 0

=> (x + y)3 - 3xy(x + y) + z3 - 3xyz = 0

=> [(x + y)3 + z3] - 3xy(x + y) - 3xyz  = 0

=> (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0

=> (x + y +z)(x2 + y 2 + 2xy - xz - yz + z2) - 3xy(x + y + z) = 0

=> (x + y + z)(x2 + y2 + z2 - xy - yz - zx) = 0

=> x2 + y2 + z2 - xy - yz - zx = 0 (Vì x + y + z = 3)

=> 2(x2 + y2 + z2 - xy - yz - zx) = 0

=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0

=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + (x2 - 2zx + z2) = 0

=> (x - y)2 + (y - z)2 + (x - z)2 = 0

=> \(\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}}\Rightarrow x=y=z\)

mà x + y + z = 3

=> x = y = z = 1

Khi đó A = 673(x2019 + y2019 + z2019) + 1 

= 673(12019 + 12019 + 12019) + 1

= 673.3 + 1 = 2020

Vậy A = 2020

16 tháng 10 2019

ta có x2+2y+1+y2+2z+1+z2+2x+1=0

=>(x2+2x+1)+(y2+2y+1)+(z2+2z+1)=0

=>(x+1)2+(y+1)2+(z+1)2=0

Vì (x+1)2> hoặc = 0

.......

=> x=-1,y=-1,z=-1

sau đó thay vào nha

6 tháng 1 2016

câu hỏi tương tự nha bnavt390601_60by60.jpg

4 tháng 1 2018

xin loi , may tinh minh hong unikey

Dat \(\frac{x}{2017}=\frac{y}{2018}=\frac{z}{2019}=k\)

Suy ra \(x=2017k;y=2018k;z=2019k\)

Khi đó 4.(x-y).(y-z) = \(4.\left(2017k-2018k\right).\left(2018k-2019k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)

\(\left(z-x\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)

Nen \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)

27 tháng 11 2018

Câu hỏi của Đỗ Minh Châu - Toán lớp 7 - Học toán với OnlineMat

Em có thể tham khảo tại link này nhé!