K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2021

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

(y + z - x)/x = (z + x - y)/y = (x + y - z)/z = 1

--> y + z - x = x; z + x - y = y; x + y - z = z

--> y + z = 2x; z + x = 2y; x + y = 2z

Ta có: 

B = (x + y)/y.(y + z)/z.(z + x)/x

= 2z/y.2x/z.2y/x = 8

1 tháng 11 2017

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)

\(\Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\)

\(\Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}\\\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\left(x+y+z\right)=y\left(x+y+z\right)\\y\left(x+y+z\right)=z\left(x+y+z\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x+y+z\right)=0\\\left(y-z\right)\left(x+y+z\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y+z=0\end{matrix}\right.\\\left[{}\begin{matrix}y=z\\x+y+z=0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y=z\\x+y+z=0\end{matrix}\right.\)

\(\circledast\) Với \(x=y=z\) thì \(A=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

\(\circledast\) Với \(x+y+z=0\) thì\(\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

Khi đó \(A=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)=\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\dfrac{-xyz}{xyz}=-1\)

18 tháng 3 2018

@ Mashiro Shiina

@Akai Haruma

@Nguyễn Thanh Hằng

@Đẹp Trai Không Bao Giờ Sai

3 tháng 6 2017

Áp dụng tích chất dãy tỉ số bằng nhau ta có :

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}=\dfrac{x+y+z}{x+y+z}=1\\ \Rightarrow\left\{{}\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\)

\(\Rightarrow\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)=\dfrac{x+y}{y}.\dfrac{y+z}{z}.\dfrac{x+z}{x}=\dfrac{2z}{y}.\dfrac{2x}{z}.\dfrac{2y}{x}=8\)

3 tháng 6 2017

Vào đây nhé: Câu hỏi của Vũ Ngọc Minh Anh - Toán lớp 7 | Học trực tuyến

15 tháng 6 2017

a, H = \(2^{2010}-2^{2009}-2^{2008}-...-2-1\)

\(\Leftrightarrow\) 2H = \(2^{2011}-2^{2010}-2^{2009}-...-2^2-2\)

\(\Leftrightarrow\) 2H - H = \((2^{2011}-2^{2010}-2^{2009}-...-2^2-2)\) - \((2^{2010}-2^{2009}-2^{2008}-...-2-1)\)

\(\Leftrightarrow\) H = \(2^{2011}-2.2^{2010}+1\)

\(\Leftrightarrow\) H = \(2^{2011}-2^{2011}+1\)

\(\Leftrightarrow\) H = 1

Vậy H = 1

9 tháng 4 2017

a)H=22010-22009-...-2-1

=>2H=2(22010-22009-...-2-1)

=>2H=22011-22010-...-22-2

=>2H-H=(22011-22010-...-22-2)-(22010-22009-...-2-1)

=>H=22011-1

3 tháng 8 2017

Ta có : từ x - y - z =0

\(\Rightarrow x-z=y\) ; \(-z=y-x\) ; \(y+z=x\)

Lại có \(B=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)

\(\Rightarrow B=\dfrac{x-z}{x}.\dfrac{y-x}{y}.\dfrac{y+z}{z}\)

thay các hằng đẳng thức vừa tìm được vào B

\(\Rightarrow B=\dfrac{y}{x}.\dfrac{-z}{y}.\dfrac{x}{z}=-1\)

vậy B = -1

tik mik nha !!!

16 tháng 4 2018

ta có x-y-z=0

->x=y+z

y=x-z

z=x-y

B=\(\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1-\dfrac{y}{z}\right)\)

B=\(\left(\dfrac{x-z}{x}\right)\left(\dfrac{y-x}{y}\right)\left(\dfrac{z+y}{z}\right)\)

B=\(\dfrac{y}{x}.\left(-\dfrac{z}{y}\right)\left(\dfrac{x}{z}\right)\)

B=\(\dfrac{-\left(xyz\right)}{xyz}\)

B=-1

28 tháng 3 2017

x-y-z=0

\(\Rightarrow x=y+z\)

\(\Rightarrow y=x-z\)

\(\Rightarrow-z=y-z\)

\(B=\left(1-\dfrac{z}{x}\right).\left(1-\dfrac{y}{x}\right).\left(1+\dfrac{y}{z}\right)\)

\(B=\left(\dfrac{x-z}{x}\right).\left(\dfrac{y-x}{y}\right).\left(\dfrac{z+y}{z}\right)\)

\(B=(\dfrac{y}{x}).\left(\dfrac{-z}{y}\right).\left(\dfrac{x}{z}\right)\)

\(B=\dfrac{\left(y.x.-z\right)}{\left(y.x.z\right)}\Rightarrow B=-1\)

31 tháng 7 2018

Đại số lớp 7