K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

Với x = y \(\ge\)0=> \(\sqrt{x}=\sqrt{y}\) là số hữu tỉ

Với \(x\ne y>0\)

Đặt \(\sqrt{x}+\sqrt{y}=t\) là số hữu tỉ 

=> \(\frac{x-y}{\sqrt{x}-\sqrt{y}}=t\Rightarrow\sqrt{x}-\sqrt{y}=\frac{x-y}{t}\)  là số hữu tỉ 

=> \(\sqrt{x};\sqrt{y}\) là số hữu tỉ

29 tháng 10 2016

Ta có \(9x-4y=\left(3\sqrt{x}-2\sqrt{y}\right)\left(3\sqrt{x}+2\sqrt{y}\right)\)là số hữu tỷ

Vì \(\left(3\sqrt{x}-2\sqrt{y}\right)\)(1) là số hữu tỷ nên \(\left(3\sqrt{x}+2\sqrt{y}\right)\)(2) cũng là số hữu tỷ

Lấy (2) - (1) và (2) + (1) ta được

\(\hept{\begin{cases}4\sqrt{y}\\6\sqrt{x}\end{cases}}\)là 2 số hữu tỷ vậy \(\sqrt{x},\sqrt{y}\)là hai số hữu tỷ

20 tháng 5 2017

Điều kiện \(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)

\(1+\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}\)

\(\Leftrightarrow\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\)  (\(\sqrt{x}+\sqrt{y}-1>0\))

\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) (\(\sqrt{xy}-1>0\))

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2=\left(\sqrt{xy}-1\right)^2\)

\(\Leftrightarrow4\sqrt{xy}=x+y-xy-1\)

Vì x, y nguyên nên \(\sqrt{xy}\) cũng phải nguyên

\(\Rightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\) nguyên  (1)

Ta lại có: 

\(x-y=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(\Rightarrow\sqrt{x}-\sqrt{y}\) nguyên (2)

Lấy (1) + (2) và  (1) - (2) ta có:

\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}\\\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\end{cases}}\)

\(\Rightarrow\sqrt{x},\sqrt{y}\) là số nguyên

Vậy x, y là bình phương đúng của 1 số nguyên.

20 tháng 5 2017

mình sửa lại cái đề là: x, y nguyên nha m.n

AH
Akai Haruma
Giáo viên
17 tháng 7 2018

Lời giải:

Đặt \(\sqrt{x}+\sqrt{y}=a\in\mathbb{Q}\)

\(\Rightarrow \sqrt{x}=a-\sqrt{y}\)

Bình phương 2 vế:
\(x=a^2+y-2a\sqrt{y}\)

\(\Rightarrow 2a\sqrt{y}=a^2+y-x\in\mathbb{Q}\) do \(a,x,y\in\mathbb{Q}\)

Ta thấy \(\left\{\begin{matrix} 2a\sqrt{y}\in\mathbb{Q}\\ 2a\in\mathbb{Q}\end{matrix}\right.\Rightarrow \sqrt{y}\in\mathbb{Q}\)

\(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}\in\mathbb{Q}\\ \sqrt{y}\in\mathbb{Q}\end{matrix}\right.\Rightarrow \sqrt{x}\in\mathbb{Q}\)

Ta có đpcm.

20 tháng 11 2019

Đẳng thức đã cho tương đương với 

\(x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy.\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(xy+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}+\left(\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow x+y-\frac{xy+1}{x+y}=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy+1\)

\(\Leftrightarrow\sqrt{1+xy}=|x+y|\)

Vì x,y là số hữu tỉ nên Vế phải của đẳng thức là số hữu tỉ => Điều phải chứng minh

DD
16 tháng 6 2021

\(x^3-y^3=2xy\)

\(\Leftrightarrow x^4-xy^3-2x^2y=0\)

\(\Leftrightarrow\left(x^2-y\right)^2-y^2-xy^3=0\)

\(\Leftrightarrow\left(x^2-y\right)^2=y^2\left(1+xy\right)\)

\(\Leftrightarrow1+xy=\left(\frac{x^2-y}{y}\right)^2\)

Ta có đpcm. 

28 tháng 9 2016

xét 1-1/xy:
=(xy-1)/xy
nhân 4x^3y^3 vào bt:
(4x^4y^4-4x^3y^3)/4x^4y^4
thay 4x^4y^4=(x^3+y^3)^2:
=[(x^3+y^3)^2-4x^3y^3]/(x^3+y^3)^2
=(x^6+y^6-2x^3y^3)/(x^3+y^3)^2
=(x^3-y^3)^2/(x^3+y^3)^2
=>căn(1-1/xy)=lx^3-y^3l / lx^3+y^3l là số hữu tỉ


 

28 tháng 9 2016

Cô phải đọc rất kĩ mới hiểu bài của Minh. Lần sau em chú ý dùng công thức có trong phần \(f\left(x\right)\)để bài làm được trực quan hơn.
Cảm ơn em đã trình bày bài giải !

24 tháng 10 2019

\(x^{2019}+y^{2019}=2x^{1009}.y^{1009}< =>x^{2020}+x.y^{2019}=2x^{1010}y^{1009}< =\)\(>\left(x^{1010}-y^{1009}\right)^2=y^{2018}\left(1-xy\right)=>\sqrt{1-xy}=\frac{x^{1010}-y^{1009}}{y^{1009}}\)

x;y là số hữu tỉ nên có dạng \(x=\frac{m}{n};y=\frac{p}{q}\left(m;n;p;q\in Z\right)\)=> \(\sqrt{1-xy}=\frac{m^{1010}.q^{1009}-n^{1010}.p^{1009}}{n^{1010}.p^{1009}}=\frac{A}{B}\left(A;B\in Z\right)\)=> \(\sqrt{1-xy}\in Q\)

19 tháng 3 2019

Thật sự ra mục đích bài này đi chứng minh biểu thức trong ngoặc là scp

Đây là dề thi HSG toán cấp tỉnh Đồng Tháp

Có: \(\sqrt{\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)}\)

\(=\sqrt{\left(x^2+xy+yz+xz\right)\left(y^2+xy+yz+xz\right)\left(z^2+xy+yz+xz\right)}\)

Sau đó thực hiên phân tích đa thức thành nhân tử mỗi ngoặc

\(=\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)là số hữu tỉ

Vậy

Câu số 1b đề thi hsg

Chào anh từ  huyện Cao Lãnh