K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 10 2023

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.

3 tháng 12 2021

\(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{x-y}{-1};\dfrac{y}{2019}=\dfrac{z}{2020}=\dfrac{y-z}{-1};\dfrac{x}{2018}=\dfrac{z}{2020}=\dfrac{x-z}{-2}\\ \Leftrightarrow\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-2}\\ \Leftrightarrow2\left(x-y\right)=2\left(y-z\right)=x-z\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

4 tháng 3 2017

Đặt \(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}=k\)

\(\Rightarrow x=2015k;y=2016k;z=2017k\) \(\left(1\right)\)

Thay (1) vào đề bài ta được:

\(\left(2015k-2017k\right)^3:\left[\left(2015k-2016k^2\right)\left(2016k-2017k\right)\right]\)

\(=\left(-2k\right)^3:\left[-k^2\left(-k\right)\right]\)

\(=-8k^3:\left(-k\right)^3\)

\(=8\)

Vậy \(\left(x-z\right)^3:\left[\left(x-y\right)^2\left(y-z\right)\right]=8.\)

4 tháng 3 2017

nhất,nhị, tam.....bát

18 tháng 3 2018

@ Mashiro Shiina

@Akai Haruma

@Nguyễn Thanh Hằng

@Đẹp Trai Không Bao Giờ Sai

Bạn vào câu hỏi tương tự có nha, hoặc vào link này: https://hoc24.vn/hoi-dap/question/198034.html

9 tháng 6 2017

\(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}=\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-1}\Leftrightarrow x-z=x-y=y-z\Rightarrow x=y=z.\)