Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}=k\)
\(\Rightarrow x=2015k;y=2016k;z=2017k\) \(\left(1\right)\)
Thay (1) vào đề bài ta được:
\(\left(2015k-2017k\right)^3:\left[\left(2015k-2016k^2\right)\left(2016k-2017k\right)\right]\)
\(=\left(-2k\right)^3:\left[-k^2\left(-k\right)\right]\)
\(=-8k^3:\left(-k\right)^3\)
\(=8\)
Vậy \(\left(x-z\right)^3:\left[\left(x-y\right)^2\left(y-z\right)\right]=8.\)
Bạn vào câu hỏi tương tự có nha, hoặc vào link này: https://hoc24.vn/hoi-dap/question/198034.html
\(\frac{x}{2014}=\frac{y}{2015}=\frac{z}{2016}=\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Leftrightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)
\(\Leftrightarrow\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left[2\left(x-y\right)\right]^2.\left[2\left(y-z\right)\right]=8\left(x-y\right)^2\left(y-z\right)\)
@ Mashiro Shiina
@Akai Haruma
@Nguyễn Thanh Hằng
@Đẹp Trai Không Bao Giờ Sai
ko đúng đấy chứ
mình nhầm :
2) Vì /2x-3y/2015 lớn h+n hoặc bằng 0
và (x+y+x)2014 lớn hơn hoặc bằng 0 (với mọi x , y )
Mà /2x-3y/2015+ (x+y+z)2014 = 0
=) x+y+z = 0 (1)
=)2x- 3y = 0
=) x+y+x =0
=) 2(x+y+x)=0
=) 2x + 2y + 2x = 0
=) 3y+2y+3y = 0
=) 7y=0 =)y=0
thay y =0 vào (1)
=) ta có : x+y+x=0
=)x+0+x = 0
=) 2x=0 =) x=0
Vậy (x,y) = (0,0)