Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: x.y.z=46656
=> x.xk.xk^2=46656
=> (xk)^3=46656
=> xk=36 => y=36
ta có: x+y+z = 114 => x+z=78
\(x+z=144-y;xyz=\left(xk\right)^3=y^3=46656\Rightarrow x+z=144-\sqrt[3]{46656}\)
PT con 46656 xem
=36.1296=36.9.144=3.12.9.12.12=(3.12)^3
x+z=0
Ta có: xyz=46656
<=> x.xk.xk^2=46656
<=> x^3k^3=46656
<=> xk=36 hay y=36
<=> x+y=144-y=144-36=108
xyz = 46656
x . xk . xk2 = 46656
x3k3 = 46656
xk = \(\sqrt[3]{46656}\)
xk = 36
y = 36
x + y + z = 114
x + z + 36 = 114
x + z = 114 - 36
x + z = 78
ĐS: 78
Bài 2:
Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)
\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)
Tìm GTNN:
Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)
\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)
\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)
Chúc bạn học tốt.
Làm bài 1 ha :)
Áp dụng BĐT Cô si ta có:
\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)
Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)
Khi đó:
\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)
Giống Holder ghê vậy ta :D
x+z=114-y=114-xk
xyz=(xk)^3=46656=36^3=> xk=36
x+z=114-36=78