Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://hoc24.vn/hoi-dap/tim-kiem?q=Cho+c%C3%A1c+s%E1%BB%91+th%E1%BB%B1c+d%C6%B0%C6%A1ng+a,+b,+c+tho%E1%BA%A3+m%C3%A3n:+abc+a+b=3ababc+a+b=3ababc+a+b=3ab.+Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:+%E2%88%9Aaba+b+1+%E2%88%9Abbc+c+1+%E2%88%9Aaca+c+1%E2%89%A5%E2%88%9A3aba+b+1+bbc+c+1+aca+c+1%E2%89%A53\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{b}{bc+c+1}}+\sqrt{\dfrac{a}{ca+c+1}}\ge\sqrt{3}&id=695796
Đề bài sai
Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)
Lời giải:
Áp dụng BĐT AM-GM (Cô-si)
\(1+a^3+b^3\geq 3\sqrt[3]{a^3b^3}=3ab\)
\(\Rightarrow \frac{\sqrt{1+a^3+b^3}}{ab}\geq \frac{\sqrt{3ab}}{ab}=\frac{c\sqrt{3ab}}{abc}=c\sqrt{3ab}=\sqrt{c}.\sqrt{3abc}=\sqrt{3c}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+b^3+c^3}}{bc}\geq \sqrt{3a}\)
\(\frac{\sqrt{1+a^3+c^3}}{ac}\geq \sqrt{3b}\)
Cộng theo vế những BĐT vừa thu được ta có:
\(\frac{\sqrt{a^3+b^3+1}}{ab}+\frac{\sqrt{b^3+c^3+1}}{bc}+\frac{\sqrt{c^3+a^3+1}}{ac}\geq \sqrt{3}(\sqrt{a}+\sqrt{b}+\sqrt{c})\)
\(\geq \sqrt{3}.3\sqrt[3]{\sqrt{a}.\sqrt{b}.\sqrt{c}}=\sqrt{3}.3\sqrt[6]{abc}=3\sqrt{3}\) (áp dụng BĐT Cô-si)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\) \(\Rightarrow xyz=1\) (x;y;z > 0 do a;b;c>0)
Cần c/m : \(VT=\dfrac{y^2+z^2}{x}+\dfrac{x^2+z^2}{y}+\dfrac{x^2+y^2}{z}\ge x+y+z+3=VP\)
Dễ dàng c/m : VT \(\ge2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\) (1)
Thấy : \(\dfrac{xy}{z}+\dfrac{xz}{y}\ge2x\) . CMTT : \(\dfrac{xz}{y}+\dfrac{yz}{x}\ge2z;\dfrac{yz}{x}+\dfrac{xy}{z}\ge2y\)
Suy ra : \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge x+y+z\)
Có : \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge3\sqrt[3]{xyz}=3\)
Suy ra : \(2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\right)\ge x+y+z+3\left(2\right)\)
Từ (1) ; (2) suy ra : \(VT\ge VP\)
" = " \(\Leftrightarrow x=y=z=1\Leftrightarrow a=b=c=1\)
Từ \(abc+a+b=3ab\Leftrightarrow c+\dfrac{1}{a}+\dfrac{1}{b}=3\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b}\right)\rightarrow\left(x;y\right)\left(x;y>0\right)\Rightarrow c+x+y=3\)
BĐT cần chứng minh là:
\(\sqrt{\dfrac{1}{x+y+xy}}+\sqrt{\dfrac{1}{y+a+ay}}+\sqrt{\dfrac{1}{x+a+ax}}\ge\sqrt{3}\)
Áp dụng BĐT AM-GM ta có:
\(VT\ge3\sqrt[6]{\dfrac{1}{\left(x+y+xy\right)\left(x+a+ax\right)\left(a+y+ay\right)}}\ge\sqrt{3}\)
\(\Leftrightarrow (x+y+xy)(x+a+ax)(a+y+ay)\leq \frac{1}{27}\)
BĐT này luôn đúng vì ta có 2 BĐT phụ sau luôn đúng theo AM-GM \(mnp\le\left(\dfrac{m+n+p}{3}\right)^3;mn+np+mp\le\dfrac{\left(m+n+p\right)^2}{3}\)
Ok. Done !
quả nhiên đề bị sai =))