K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

Ta khai triển VT trước

\(VT=\frac{1-b-c+bc}{b+c}+\frac{1-c-a+ca}{c+a}+\frac{1-a-b+ab}{a+b}=\frac{\left(1-b\right)-c\left(1-b\right)}{1-a}+\frac{\left(1-c\right)-a\left(1-c\right)}{1-b}+\frac{\left(1-a\right)-b\left(1-a\right)}{1-c}=\frac{\left(1-c\right)\left(1-b\right)}{1-a}+\frac{\left(1-c\right)\left(1-a\right)}{1-b}+\frac{\left(1-a\right)\left(1-b\right)}{1-c}\)Với a,b,c luôn dương vào a+b+c=1 nên a,b,c<1\(\Rightarrow\)1-a,1-b,1-c>0

Áp dụng Cosi có \(\frac{\left(1-c\right)\left(1-b\right)}{1-a}+\frac{\left(1-c\right)\left(1-a\right)}{1-b}\ge2\left(1-c\right)\left(1\right)\).Tương tự: \(\frac{\left(1-c\right)\left(1-a\right)}{1-b}+\frac{\left(1-a\right)\left(1-b\right)}{1-c}\ge2\left(1-a\right)\left(2\right)\)

\(\frac{\left(1-c\right)\left(1-b\right)}{1-a}+\frac{\left(1-a\right)\left(1-b\right)}{1-c}\ge2\left(1-b\right)\left(3\right)\)

Cộng (1),(2) và (3) có \(2VT\ge2\left(3-a-b-c\right)\Leftrightarrow VT\ge3-1=2\)

17 tháng 3 2020

é,đề bài thiếu nha,phải là

\(\frac{a+bc}{b+c}\)+\(\frac{b+ac}{a+c}\)+\(\frac{c+ab}{a+b}\) ≥2

31 tháng 3 2018

a+bc/b+c  +  b+ca/c+a  +  c+ab/a+b

ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a

tương tự với các phân số còn lại:

ta đc:H=(1-b)(1-c)/1-a  +  (1-a)(1-c)/1-b  +  (1-a)(1-b)/1-c

đặt 1-a=x, 1-b=y, 1-c=z =>

yz/x + xz/y + xy/z

áp dụng bđt cô-sin =>

yz/x + xz/y >= 2 căn yz/x . xz/y=2z

tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y

=> 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4

=> H>= 2

=> bt trên >= 2

31 tháng 3 2018

a+bc/b+c  +  b+ca/c+a  +  c+ab/a+b ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a tương tự với các phân số còn lại: ta đc:H=(1-b)(1-c)/1-a  +  (1-a)(1-c)/1-b  +  (1-a)(1-b)/1-c đặt 1-a=x, 1-b=y, 1-c=z => yz/x + xz/y + xy/z áp dụng bđt cô-sin => yz/x + xz/y >= 2 căn yz/x . xz/y=2z tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y => 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4 => H>= 2 => bt trên >= 2 

20 tháng 1 2019

Theo đề ra ta có :

 \(ab+bc+ca-\frac{\left(a+b+c\right)^2}{3}=-\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{6}\right]\le0\)

và : \(ab+bc+ca\le3\)

Suy ra : \(\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức AM - GM ta được :

\(\frac{ab}{\sqrt{c^2+3}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{b+c}\right)\)

Thiết lập 2 đẳng thức tương tự, cộng về theo về, ta có :

\(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{1}{2}\left[\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\left(\frac{bc}{a+b}+\frac{ca}{a+b}\right)+\left(\frac{ca}{b+c}+\frac{ab}{b+c}\right)\right]\)

và : \(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{a+b+c}{2}\)

Mà : \(a+b+c=3\)( theo đề bài ) , suy ra đpcm

20 tháng 1 2019

ở dòng thứ 3 qua dòng thứ 4 bạn sai nhé. đáng lẽ là \(\ge\)

7 tháng 12 2017

Chứng minh BĐT Phụ: \(a^5+b^5\ge a^4b+ab^4\)với \(a;b>0\)

\(\Rightarrow\frac{a^5+b^5}{ab\left(a+b\right)}\ge\frac{a^4b+ab^4}{ab\left(a+b\right)}=\frac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\frac{ab\left(a+b\right)\left(a^2-ab+b^2\right)}{ab\left(a+b\right)}=a^2-ab+b^2\)

Áp dụng ta có: \(VT\)(VẾ TRÁI)\(\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)                       \(\left(1\right)\)

Xét: \(\left[2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\right]-\left[3\left(ab+bc+ca\right)-2\right]\)

\(=2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+2\)

\(=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)              (Do a2+b2+c2=1)                           \(\left(2\right)\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca\)   Tự chứng minh                                                               \(\left(3\right)\)

Từ (1);(2) và (3) suy ra \(VT\ge3\left(ab+bc+ca\right)-2\)

Vậy \(\frac{a^5+b^5}{ab\left(a+b\right)}+\frac{b^5+c^5}{bc\left(b+c\right)}+\frac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)

23 tháng 3 2017

Từ \(a+b+c=1\Rightarrow2a+2b+2c=1\)

\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=2\)

Ta có: \(\frac{a+bc}{b+c}=\frac{a\left(a+b+c\right)+bc}{b+c}=\frac{\left(a+b\right)\left(a+c\right)}{b+c}\)

Tương tự ta viết lại BĐT cần chứng minh như sau:

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{c+a}+\frac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\)

Đặt \(\hept{\begin{cases}x=b+c\\y=a+c\\z=a+b\end{cases}}\) thì BĐT cần chứng minh là:

\(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge2\forall\hept{\begin{cases}x,y,z>0\\x+y+z=2\end{cases}}\)

Áp dụng BĐT AM-GM ta có: 

\(\hept{\begin{cases}\frac{xy}{z}+\frac{xz}{y}\ge2x\\\frac{xz}{y}+\frac{yz}{x}\ge2y\\\frac{yz}{x}+\frac{xy}{z}\ge2z\end{cases}}\)

Cộng theo vế rồi thu gọn ta có:\(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge2\)

BĐT được chứng minh nên BĐT đầu cũng đã được chứng minh

10 tháng 12 2017

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

22 tháng 11 2017

Mk cx đang định hỏi câu này