K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

Đặt \(m=a^2+b^2+c^2,m\ge0\)

Áp dụng bất đẳng thức Bunhiacopxki , ta có : 

\(\frac{9}{4}=\left(a.\sqrt{1-b^2}+b.\sqrt{1-c^2}+c.\sqrt{1-a^2}\right)^2\le\left(a^2+b^2+c^2\right)\left(3-a^2-b^2-c^2\right)\)

\(\Rightarrow m\left(3-m\right)\ge\frac{9}{4}\) \(\Leftrightarrow\left(m-\frac{3}{2}\right)^2\le0\) mà ta luôn có \(\left(m-\frac{3}{2}\right)^2\ge0\)

Do đó \(\left(m-\frac{3}{2}\right)^2=0\Rightarrow m=\frac{3}{2}\)

Vậy \(a^2+b^2+c^2=\frac{3}{2}\)

 

20 tháng 7 2016

Đặt \(x=a^2+b^2+c^2\), cần chứng minh \(x=\frac{3}{2}\)

Từ giả thiết \(a\sqrt{1-b^2}+b\sqrt{1-a^2}+c\sqrt{1-a^2}=\frac{3}{2}\) , áp dụng bất đẳng thức Bunhiacopxki , ta có : 

\(\left(\frac{3}{2}\right)^2=\left(a.\sqrt{1-b^2}+b.\sqrt{1-c^2}+c.\sqrt{1-a^2}\right)^2\)

\(\le\left(a^2+b^2+c^2\right)\left[3-a^2-b^2-c^2\right]\)

\(\Rightarrow x\left(3-x\right)\ge\frac{9}{4}\Leftrightarrow x^2-3x+\frac{9}{4}\le0\Leftrightarrow\left(x-\frac{3}{2}\right)^2\le0\)(1)

Mà ta luôn có \(\left(x-\frac{3}{2}\right)^2\ge0\) (2)

Từ (1) và (2) suy ra \(\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x=\frac{3}{2}\)

Vậy \(a^2+b^2+c^2=\frac{3}{2}\)(đpcm)

10 tháng 9 2017

Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập  springtime ấy

10 tháng 9 2017

Chào bác Thắng

3 tháng 9 2017

\(a\sqrt{1-b^2}=\sqrt{a^2\left(1-b^2\right)}\) < hoặc = \(\frac{a^2-1+b^2}{2}\)

Tương tự ta có \(\sqrt{b^2\left(1-c^2\right)}\)< hoặc = \(\frac{b^2+1-c^2}{2}\),\(\sqrt{c^2\left(1-a^2\right)}\)< hoặc = \(\frac{c^2+1-a^2}{2}\)

=> VT < hoặc = \(\frac{b^2+1-a^2+a^2+1-c^2+c^2+1-b^2}{2}=\frac{3}{2}\)

Mà \(VP=\frac{3}{2}\)

Khi đó dấu bằng xảy ra khi \(\hept{\begin{cases}a^2=1-b^2\\c^2=1-a^2\\b^2=1-c^2\end{cases}\Leftrightarrow2\left(a^2+b^2+c^2\right)=3\Leftrightarrow a^2+b^2+c^2=\frac{3}{2}}\)

4 tháng 9 2017

Cảm ơn bạn =))

27 tháng 5 2021

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).

Với \(a,b>0\), ta có:

\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).

\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).

\(\Leftrightarrow a^4-a^3-a+1\ge0\).

\(\Leftrightarrow a^4-a^3+1\ge a\).

\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).

\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).

Chứng minh tương tự (với \(b,c>0\)), ta được:

\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=1\).

Chứng minh tương tự (với \(a,c>0\)), ta được:

\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)

Dấu bằng xảy ra \(\Leftrightarrow c=1\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:

\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).

\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).

Ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).

Do đó:

\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).

\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).

\(+2\)nhé, không phải \(-2\)đâu.

27 tháng 8 2017

\(GT\Leftrightarrow2a\sqrt{1-b^2}+2b\sqrt{1-c^2}+2c\sqrt{1-a^2}=3\)

\(\Leftrightarrow\left(a-\sqrt{1-b^2}\right)^2+\left(b-\sqrt{1-c^2}\right)^2+\left(c-\sqrt{1-a^2}\right)^2=0\)

3 tháng 2 2021

Ta có: \(\left(a^4-a^3+2\right)-\left(a+1\right)=\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)\(\Rightarrow a^4-a^3+2\ge a+1\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\)

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\)

Tương tự:\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\)\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+c+1}}\)

\(\Rightarrow VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\)\(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{abc+ac+c}+\frac{ac}{abc^2+abc+ac}+\frac{1}{ca+c+1}\right)}\)\(\le\sqrt{3\left(\frac{c}{ac+c+1}+\frac{ac}{ac+c+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)(abc = 1)

Đẳng thức xảy ra khi a = b = c = 1