Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=k\)
\(\Rightarrow a=2014k;b=2015k;c=2016k\)
\(\Rightarrow4(a-b)(b-c)=4(2014k-2015k)(2015k-2016k)\)
\(\Rightarrow4\cdot k(2014-2015)\cdot k(2015-2016)=4\cdot k\cdot(-1)\cdot k\cdot(-1)=4\cdot k^2\)
\(\Rightarrow(c-a)(c-a)=(c-a)^2=(2016k-2014k)=[k(2016-2014)]^2=(k\cdot2)^2=k^{2\cdot4}\)
Rồi tự suy ra đấy
Bạn Namikaze Minato làm đúng rồi đấy
\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=\frac{a-b}{2014-2015}\)
\(=\frac{b-c}{2015-2016}=\frac{c-a}{2016-2014}\)
\(=\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Rightarrow a-b=-\frac{c-a}{2};b-c=-\frac{c-a}{2}\)
do đó: \(\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)
\(\Rightarrow M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2=0\)
a,a=b+1
suy ra a-b=1 suy ra(\(\sqrt{a}+\sqrt{b}\))(\(\sqrt{a}-\sqrt{b}\))=1
suy ra \(\sqrt{a}-\sqrt{b}\)=\(\frac{1}{\sqrt{a}+\sqrt{b}}\)(1)
vì a=b+1 suy ra a>b suy ra \(\sqrt{a}>\sqrt{b}\)suy ra \(\sqrt{a}+\sqrt{b}>2\sqrt{b}\)
suy ra \(\frac{1}{\sqrt{a}+\sqrt{b}}< \frac{1}{2\sqrt{b}}\)(2)
từ (1) ,(2) suy ra\(\sqrt{a}-\sqrt{b}< \frac{1}{2\sqrt{b}}\)suy ra \(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)(*)
ta lại có b+1=c+2 suy ra b-c =1 suy ra\(\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\)
suy ra \(\sqrt{b}-\sqrt{c}=\frac{1}{\sqrt{b}+\sqrt{c}}\)(3)
vì b>c suy ra \(\sqrt{b}>\sqrt{c}\) suy ra \(\sqrt{b}+\sqrt{c}>2\sqrt{c}\)
suy ra \(\frac{1}{\sqrt{b}+\sqrt{c}}< \frac{1}{2\sqrt{c}}\)(4)
Từ (3),(4) suy ra \(\sqrt{b}-\sqrt{c}< \frac{1}{2\sqrt{c}}\) suy ra\(2\left(\sqrt{b}+\sqrt{c}\right)< \frac{1}{\sqrt{c}}\)(**)
từ (*),(**) suy ra đccm
\(P=\left(5a+\frac{2}{b+c}\right)^2+\left(5b+\frac{2}{c+a}\right)^2+\left(5c+\frac{2}{a+b}\right)^2\)
\(=4\text{∑}\frac{1}{\left(a+b\right)^2}+20\text{ }\text{∑}\left(\frac{a}{b+c}\right)+75\)
\(\ge2\text{∑}\frac{1}{a^2+b^2}+20\cdot\frac{3}{2}+75\)
\(\ge2\cdot\frac{9}{2\left(a^2+b^2+c^2\right)}+105=108\)
Dấu = khi a=b=c=1
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
Lời giải:
Có: \(\left\{\begin{matrix} a+b+c=9\\ a^2+b^2+c^2=27\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (a+b+c)^2=81\\ a^2+b^2+c^2=27\end{matrix}\right.\)
\(\Rightarrow (a+b+c)^2-(a^2+b^2+c^2)=54\)
\(\Leftrightarrow 2(ab+bc+ac)=54\Leftrightarrow ab+bc+ac=27\)
Do đó: \(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow \frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}=0(*)\)
Ta thấy: \((a-b)^2; (b-c)^2; (c-a)^2\geq 0\forall a,b,c\in\mathbb{R}\)
Suy ra \((*)\) xảy ra khi và chỉ khi
\((a-b)^2=(b-c)^2=(c-a)^2=0\Leftrightarrow a=b=c\)
Khi đó: \(a=b=c=\frac{9}{3}=3\) (thỏa mãn)
\(P=(a-2)^{2015}+(b-3)^{2016}+(c-4)^{2017}=1^{2015}+0^{2016}+(-1)^{2017}\)
\(P=1+0+(-1)=0\)
Ta có: \(\hept{\begin{cases}\left(2x-y-4\right)^{2016}\ge0\\\left(3x+2y-13\right)^{2016}\ge0\end{cases}}\)
\(\Rightarrow\left(2x-y-4\right)^{2016}+\left(3x+2y-13\right)^{2016}\ge0\)
Dấu bằng xảy ra khi
\(\hept{\begin{cases}2x-y-4=0\\3x+2y-13=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
\(\Rightarrow A=\left(x-y\right)^{2016}+2016=\left(3-2\right)^{2016}+2016=2017\)
a + b + c = 0
<=> (a + b + c)^2 = 0
<=> a^2 + b^2 + c^2 + 2(ab + bc + ca) = 0
<=> a^2 + b^2 + c^2 = 0
<=> a = b = c = 0
=> Q = - 1 + 1 + 1 = 1
ta có \(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4a+4\sqrt{abc}\)
=> \(4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)
=> \(\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)
=> \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)
tương tự như thế thay vào , thì A=8
Ta có:
\(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4c+4\sqrt{abc}\)
\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)
\(\Rightarrow\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)
Tương tự như thế thay vào, thì A = 8