Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BĐT \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
\(\Leftrightarrow\dfrac{1}{2}\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\) (đúng)
\(\Rightarrow ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=1\)
Khi đó áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\). Tương tự cho 2 BĐT còn lại:
\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}=VP\)
Xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\)
Áp dụng BĐT Bu-nhi-a ta có:
\(\sqrt{a^2+1}=\sqrt{a^2+\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}}=\dfrac{1}{2}\sqrt{4\left(a^2+\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}\right)}\)
\(\ge\dfrac{1}{2}\sqrt{\left(a+\dfrac{1}{\sqrt{3}}.3\right)^2}=\dfrac{1}{2}\sqrt{\left(a+\sqrt{3}\right)^2}=\dfrac{a+\sqrt{3}}{2}\left(a>0\right)\)
Tương tự ta cũng có: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{2b}{b+\sqrt{3}}\)
\(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{2c}{c+\sqrt{3}}\)
=> \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\)
\(\le2\left(\dfrac{a}{2a+b+c}+\dfrac{b}{2b+a+c}+\dfrac{c}{2c+a+b}\right)\) (1)
Áp dụng BĐT phụ: \(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{x+y}\) ta có:
\(\dfrac{a}{2a+b+c}+\dfrac{b}{2b+a+c}+\dfrac{c}{2c+a+b}\)
\(=\dfrac{a}{\left(a+b\right)+\left(a+c\right)}+\dfrac{b}{\left(a+b\right)+\left(b+c\right)}+\dfrac{c}{\left(a+c\right)+\left(b+c\right)}\)
\(\le\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{a+c}{a+c}+\dfrac{b+a}{a+b}+\dfrac{c+b}{b+c}\right)=\dfrac{3}{4}\) (2)
Từ (1); (2)
=> \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le2.\dfrac{3}{4}=\dfrac{3}{2}\left(đpcm\right)\)
Dấu = xảy ra <=> \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Lời giải:
Theo hệ quả quen thuộc của BĐT AM-GM thì:
\((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Leftrightarrow (\sqrt{3})^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 1\)
\(\Rightarrow \frac{a}{\sqrt{a^2+1}}\leq \frac{a}{\sqrt{a^2+ab+bc+ac}}=\frac{a}{\sqrt{(a+b)(a+c)}}\)
Hoàn toàn TT với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)
\(\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{b}{b+a}\right)+\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\) (BĐT Cauchy)
hay \(\text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)(đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a^2+b+c\ge\dfrac{\left(a+b+c\right)^2}{1+b+c}\Rightarrow\sqrt{\dfrac{a^2}{a^2+b+c}}\le\dfrac{a\sqrt{1+b+c}}{a+b+c}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(A\le\dfrac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(a\sqrt{1+b+c}=\dfrac{\sqrt{3a}\sqrt{a+ab+bc}}{\sqrt{3}}\le\dfrac{4a+ab+bc}{2\sqrt{3}}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(\Rightarrow\dfrac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\dfrac{2(a+b+c)+(ab+bc+ca)}{\sqrt{3}(a+b+c)}\)
\(\le\dfrac{2(a+b+c)+\dfrac{(a+b+c)^2}{3}}{\sqrt{3}(a+b+c)}\le\dfrac{2+\dfrac{a+b+c}{3}}{\sqrt{3}}\le\sqrt{3}\)
Hay \(A\le\sqrt{3}\) *ĐPCM*
nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)
Ta có
\(\sum\dfrac{a}{a+\sqrt{2019a+bc}}=\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\)
Áp dụng AM - GM : \(b+c\ge2\sqrt{bc}\)
\(\Rightarrow\sum\dfrac{a}{a+\sqrt{a^2+a\left(b+c\right)+bc}}\le\dfrac{a}{a+\sqrt{a^2+2a\sqrt{bc}+bc}}\)
\(=\sum\dfrac{a}{a+\sqrt{\left(a+\sqrt{bc}\right)^2}}=\sum\dfrac{a}{a+a+\sqrt{bc}}\)
Tự làm tiếp
Rốt cuộc cái đề nào đúng????
Xin lỗi bạn cái đề trên đấy bạn