Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\frac{\Rightarrow1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Thay vào M ta có
\(\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
P/s : hỏi từng câu thôi
Bài này tui làm rùi mà.
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{1}{\frac{1}{a}+\frac{1}{b}}=\frac{1}{\frac{1}{b}+\frac{1}{c}}=\frac{1}{\frac{1}{c}+\frac{1}{a}}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\Leftrightarrow a=b=c\)
\(\Leftrightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{3a^2}{3a^2}=1\)
\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc\Rightarrow abb+abc=abc+bbc\Rightarrow a=c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(c+a\right).bc=\left(b+c\right).ca\Rightarrow bcc+abc=abc+cca\Rightarrow a=b\end{cases}\Rightarrow a=b=c}\)
\(M=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
p/s: bài này có nhiều cách lắm, cách này ko đc thì thử làm cách khác =))
\(\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab\left(b+c\right)=\left(a+b\right)bc\)
\(\Rightarrow ab^2+abc=abc+b^2c\Rightarrow ab^2=b^2c\Rightarrow a=c\) (1)
\(\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow bc\left(c+a\right)=\left(b+c\right)ca\)
\(\Rightarrow bc^2+bca=bca+c^2a\Rightarrow bc^2=c^2a\Rightarrow b=a\)(2)
Từ (1) và (2) được a = b = c
Khi đó:
\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
Thay 105 = abc
\(M=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}.\)a không thể = 0 vì tích abc = 105
\(M=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{b+1+bc}=\frac{bc+b+1}{bc+b+1}=1.\)vì bc+b+1 khác 0.
Nếu bạn thử thế số vào luôn thì sẽ dể làm hơn đó
vì ta có a.b.c= 105 nên a,b,c khác 0
ta có a.b.c=3.5.7=105
=> ta có a=3, b=5, c=7. Sau đó bạn thế số vào nhé
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{a}{a+b}\cdot b=\frac{c}{b+c}\cdot b\)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{b+c}\Rightarrow a\left(b+c\right)=c\left(a+b\right)\Rightarrow ab+ac=ac+bc\Rightarrow ab=bc\Rightarrow a=c\left(1\right)\)
\(\frac{ab}{a+b}=\frac{ac}{a+c}=\frac{b}{a+b}\cdot a=\frac{c}{a+c}\cdot a\)
\(\Rightarrow\frac{b}{a+b}=\frac{c}{a+c}\Rightarrow b\left(a+c\right)=c\left(a+b\right)\Rightarrow ab+bc=ac+bc\Rightarrow ab=ac\Rightarrow b=c\left(2\right)\)
\(\frac{bc}{b+c}=\frac{ac}{a+c}=\frac{b}{b+c}\cdot c=\frac{a}{a+c}\cdot c\)
\(\Rightarrow\frac{b}{b+c}=\frac{a}{a+c}\Rightarrow b\left(a+c\right)=a\left(b+c\right)\Rightarrow ab+bc=ab+ac\Rightarrow bc=ac\Rightarrow a=b\left(3\right)\)
từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{ab+bc+ac}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\iff\)\(\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)
\(\iff\) \(ac+bc=ab+ac=bc+ba\)
+)\(ac+bc=ab+ac\)
\(\implies\)\(bc=ab\)
\(\implies\) \(c=a\left(1\right)\)
+)\(ab+ac=bc+ba\)
\(\implies\) \(ac=bc\)
\(\implies\) \(a=b\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\implies\) \(a=b=c\)
\(\implies\) \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{aa+bb+cc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
Vậy \(M=1\)
Có: \(\frac{a}{1+ab}=\frac{b}{1+bc}=\frac{c}{1+ac}\)
Vì a, b, c đôi một khác nhau nên suy ra a, b, c khác 0.
=> \(\frac{1+ab}{a}=\frac{1+bc}{b}=\frac{1+ac}{c}\)
=> \(\frac{1}{a}+b=\frac{1}{b}+c=\frac{1}{c}+a\)
=> \(\hept{\begin{cases}\frac{1}{a}+b=\frac{1}{b}+c\\\frac{1}{b}+c=\frac{1}{c}+a\\\frac{1}{c}+a=\frac{1}{a}+b\end{cases}}\)=> \(\hept{\begin{cases}\frac{b-a}{ab}=c-b\\\frac{c-b}{bc}=a-c\\\frac{a-c}{ac}=b-a\end{cases}}\)
Nhân vế theo vế ta có: \(\frac{\left(b-a\right)\left(c-b\right)\left(a-c\right)}{ab.bc.ac}=\left(c-b\right)\left(a-c\right)\left(b-a\right)\)
=> \(\frac{1}{a^2b^2c^2}=1\)
=> \(\left(abc\right)^2=1\)
=> \(M=abc=\pm1\)